qwen2.5-0.5b-expo-L2EXPO-W0-noES4-0.1
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set:
- Loss: 179.2621
- Logps: -92.2613
- Logits: -1.4975
- Objective: 175.9752
- Dpo Loss: 0.6785
- Regularize: 0.3992
- Ranking Simple: 0.5280
- Ranking Idealized: 0.6025
- Ranking Idealized Expo: 0.5233
- Wo Beta: 16.5856
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta |
---|---|---|---|---|---|---|---|---|---|---|---|---|
182.5182 | 0.1417 | 50 | 182.5003 | -90.8517 | -1.4200 | 180.4893 | 0.6895 | 0.4093 | 0.5248 | 0.6025 | 0.5233 | 16.3100 |
159.305 | 0.2834 | 100 | 182.1522 | -91.3531 | -1.4622 | 180.5219 | 0.6860 | 0.4103 | 0.5311 | 0.6025 | 0.5233 | 16.3819 |
150.2379 | 0.4251 | 150 | 180.0575 | -90.2469 | -1.4576 | 177.1578 | 0.6806 | 0.4010 | 0.5331 | 0.6025 | 0.5233 | 16.6107 |
135.925 | 0.5668 | 200 | 179.9740 | -91.1249 | -1.4453 | 177.0413 | 0.6795 | 0.4006 | 0.5305 | 0.6025 | 0.5233 | 16.2687 |
130.7065 | 0.7085 | 250 | 181.5092 | -91.6178 | -1.5061 | 178.2784 | 0.6800 | 0.4049 | 0.5305 | 0.6025 | 0.5233 | 16.6407 |
109.74 | 0.8503 | 300 | 180.4924 | -92.4236 | -1.4760 | 178.1365 | 0.6815 | 0.4047 | 0.5305 | 0.6025 | 0.5233 | 16.4981 |
104.2663 | 0.9920 | 350 | 182.2591 | -92.8005 | -1.5066 | 178.8644 | 0.6808 | 0.4058 | 0.5290 | 0.6025 | 0.5233 | 16.5694 |
91.3585 | 1.1337 | 400 | 180.0295 | -92.3854 | -1.4789 | 177.7148 | 0.6800 | 0.4024 | 0.5280 | 0.6025 | 0.5233 | 16.5852 |
77.8925 | 1.2754 | 450 | 179.2441 | -92.7062 | -1.4746 | 175.8475 | 0.6792 | 0.3989 | 0.5274 | 0.6025 | 0.5233 | 16.5269 |
73.5844 | 1.4171 | 500 | 180.3643 | -93.2695 | -1.4849 | 176.2332 | 0.6786 | 0.3994 | 0.5305 | 0.6025 | 0.5233 | 16.5003 |
74.752 | 1.5588 | 550 | 181.3646 | -92.8892 | -1.4832 | 177.2267 | 0.6795 | 0.4020 | 0.5274 | 0.6025 | 0.5233 | 16.5546 |
66.606 | 1.7005 | 600 | 179.4953 | -91.6158 | -1.4675 | 176.2793 | 0.6789 | 0.3999 | 0.5311 | 0.6025 | 0.5233 | 16.6183 |
65.4503 | 1.8422 | 650 | 180.1248 | -91.8974 | -1.5046 | 176.5553 | 0.6790 | 0.4003 | 0.5285 | 0.6025 | 0.5233 | 16.5373 |
62.3615 | 1.9839 | 700 | 179.3857 | -91.5875 | -1.4984 | 176.0021 | 0.6784 | 0.3992 | 0.5300 | 0.6025 | 0.5233 | 16.5863 |
48.9708 | 2.1256 | 750 | 179.8103 | -92.1933 | -1.4919 | 176.7028 | 0.6794 | 0.4011 | 0.5274 | 0.6025 | 0.5233 | 16.5884 |
51.9463 | 2.2674 | 800 | 179.2178 | -92.0065 | -1.4993 | 175.7036 | 0.6782 | 0.3986 | 0.5290 | 0.6025 | 0.5233 | 16.5689 |
44.3463 | 2.4091 | 850 | 179.1735 | -92.2372 | -1.4918 | 175.7777 | 0.6783 | 0.3988 | 0.5285 | 0.6025 | 0.5233 | 16.5682 |
44.3015 | 2.5508 | 900 | 179.1590 | -92.1898 | -1.4983 | 175.8240 | 0.6784 | 0.3990 | 0.5280 | 0.6025 | 0.5233 | 16.5905 |
43.4164 | 2.6925 | 950 | 179.2801 | -92.2046 | -1.4967 | 176.0408 | 0.6785 | 0.3993 | 0.5274 | 0.6025 | 0.5233 | 16.5891 |
43.6009 | 2.8342 | 1000 | 179.2791 | -92.2705 | -1.4978 | 175.9963 | 0.6785 | 0.3992 | 0.5280 | 0.6025 | 0.5233 | 16.5880 |
47.7054 | 2.9759 | 1050 | 179.2622 | -92.2613 | -1.4975 | 175.9752 | 0.6785 | 0.3992 | 0.5280 | 0.6025 | 0.5233 | 16.5856 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 8
Model tree for hZzy/qwen2.5-0.5b-expo-L2EXPO-W0-noES4-0.1
Base model
hZzy/qwen2.5-0.5b-sft-news-IFT