Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-noES2-0.1

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8210
  • Logps: -136.0435
  • Logits: -1.9089
  • Objective: 0.8326
  • Dpo Loss: 0.8326
  • Regularize: 0.8326
  • Ranking Simple: 0.5631
  • Wo Beta: 10.0450

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 144
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Wo Beta
0.644 0.1417 50 0.6810 -88.9389 -1.5667 0.6836 0.6836 0.6836 0.5316 7.8652
0.5968 0.2834 100 0.6815 -101.2053 -1.7411 0.6847 0.6847 0.6847 0.5393 7.7021
0.5144 0.4251 150 0.6850 -94.4351 -1.7346 0.6782 0.6782 0.6782 0.5549 7.3585
0.4808 0.5668 200 0.7037 -103.6052 -1.8068 0.7036 0.7036 0.7036 0.5569 7.7326
0.4863 0.7085 250 0.7026 -91.8159 -1.9767 0.6984 0.6984 0.6984 0.5476 7.8312
0.4389 0.8503 300 0.6993 -105.6110 -2.0810 0.6947 0.6947 0.6947 0.5600 7.5894
0.3851 0.9920 350 0.7227 -103.2476 -2.0184 0.7155 0.7155 0.7155 0.5492 7.9656
0.2556 1.1337 400 0.7344 -109.3563 -1.9806 0.7314 0.7314 0.7314 0.5445 8.6228
0.264 1.2754 450 0.7229 -110.4481 -1.8432 0.7204 0.7204 0.7204 0.5580 8.5473
0.2767 1.4171 500 0.7313 -111.4522 -1.9699 0.7300 0.7300 0.7300 0.5497 8.5441
0.2273 1.5588 550 0.7207 -116.6543 -1.7731 0.7313 0.7313 0.7313 0.5575 8.5606
0.2232 1.7005 600 0.7356 -115.8618 -1.7360 0.7399 0.7399 0.7399 0.5719 8.7758
0.2623 1.8422 650 0.7370 -117.7434 -2.0182 0.7381 0.7381 0.7381 0.5745 8.7274
0.2194 1.9839 700 0.7433 -121.1650 -1.9499 0.7528 0.7528 0.7528 0.5657 9.0270
0.1094 2.1256 750 0.8255 -134.3582 -1.8660 0.8363 0.8363 0.8363 0.5611 10.1139
0.1222 2.2674 800 0.8124 -133.2139 -1.9092 0.8237 0.8237 0.8237 0.5652 9.8993
0.1161 2.4091 850 0.8204 -134.1696 -1.8946 0.8314 0.8314 0.8314 0.5642 9.9670
0.1268 2.5508 900 0.8157 -135.2029 -1.8941 0.8271 0.8271 0.8271 0.5642 9.9596
0.1263 2.6925 950 0.8189 -135.8437 -1.9048 0.8305 0.8305 0.8305 0.5642 10.0013
0.1197 2.8342 1000 0.8205 -135.9884 -1.9072 0.8320 0.8320 0.8320 0.5626 10.0373
0.1192 2.9759 1050 0.8210 -136.0435 -1.9089 0.8326 0.8326 0.8326 0.5631 10.0450

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for hZzy/qwen2.5-0.5b-expo-DPO-noES2-0.1

Finetuned
(74)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-DPO-noES2-0.1