Resneteau is a fine-tuned version of microsoft/resnet-50. It achieves the following results on the test set:
- Loss: 0.1906
- F1 Micro: 0.6954
- F1 Macro: 0.4462
- Accuracy: 0.1827
Model description
Resneteau is a model built on top of microsoft/resnet-50 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
The source code for training the model can be found in this Git repository.
- Developed by: lombardata, credits to César Leblanc and Victor Illien
Intended uses & limitations
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
Training and evaluation data
Details on the number of images for each class are given in the following table:
Class | train | val | test | Total |
---|---|---|---|---|
Acropore_branched | 1469 | 464 | 475 | 2408 |
Acropore_digitised | 568 | 160 | 160 | 888 |
Acropore_sub_massive | 150 | 50 | 43 | 243 |
Acropore_tabular | 999 | 297 | 293 | 1589 |
Algae_assembly | 2546 | 847 | 845 | 4238 |
Algae_drawn_up | 367 | 126 | 127 | 620 |
Algae_limestone | 1652 | 557 | 563 | 2772 |
Algae_sodding | 3148 | 984 | 985 | 5117 |
Atra/Leucospilota | 1084 | 348 | 360 | 1792 |
Bleached_coral | 219 | 71 | 70 | 360 |
Blurred | 191 | 67 | 62 | 320 |
Dead_coral | 1979 | 642 | 643 | 3264 |
Fish | 2018 | 656 | 647 | 3321 |
Homo_sapiens | 161 | 62 | 59 | 282 |
Human_object | 157 | 58 | 55 | 270 |
Living_coral | 406 | 154 | 141 | 701 |
Millepore | 385 | 127 | 125 | 637 |
No_acropore_encrusting | 441 | 130 | 154 | 725 |
No_acropore_foliaceous | 204 | 36 | 46 | 286 |
No_acropore_massive | 1031 | 336 | 338 | 1705 |
No_acropore_solitary | 202 | 53 | 48 | 303 |
No_acropore_sub_massive | 1401 | 433 | 422 | 2256 |
Rock | 4489 | 1495 | 1473 | 7457 |
Rubble | 3092 | 1030 | 1001 | 5123 |
Sand | 5842 | 1939 | 1938 | 9719 |
Sea_cucumber | 1408 | 439 | 447 | 2294 |
Sea_urchins | 327 | 107 | 111 | 545 |
Sponge | 269 | 96 | 105 | 470 |
Syringodium_isoetifolium | 1212 | 392 | 391 | 1995 |
Thalassodendron_ciliatum | 782 | 261 | 260 | 1303 |
Useless | 579 | 193 | 193 | 965 |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- Number of Epochs: 28.0
- Learning Rate: 0.001
- Train Batch Size: 32
- Eval Batch Size: 32
- Optimizer: Adam
- LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
- Freeze Encoder: Yes
- Data Augmentation: Yes
Data Augmentation
Data were augmented using the following transformations :
Train Transforms
- PreProcess: No additional parameters
- Resize: probability=1.00
- RandomHorizontalFlip: probability=0.25
- RandomVerticalFlip: probability=0.25
- ColorJiggle: probability=0.25
- RandomPerspective: probability=0.25
- Normalize: probability=1.00
Val Transforms
- PreProcess: No additional parameters
- Resize: probability=1.00
- Normalize: probability=1.00
Training results
Epoch | Validation Loss | Accuracy | F1 Macro | F1 Micro | Learning Rate |
---|---|---|---|---|---|
1 | 0.24598382413387299 | 0.08766458766458766 | 0.5801698557249565 | 0.226738844317642 | 0.001 |
2 | 0.22168199717998505 | 0.13686763686763687 | 0.6411905904944791 | 0.3160165508599939 | 0.001 |
3 | 0.21166761219501495 | 0.14864864864864866 | 0.6595584072466503 | 0.3580673052862397 | 0.001 |
4 | 0.20492619276046753 | 0.16181566181566182 | 0.6673936750272628 | 0.3831121485565155 | 0.001 |
5 | 0.20162147283554077 | 0.1677061677061677 | 0.6707461695365495 | 0.3964602797407069 | 0.001 |
6 | 0.20019273459911346 | 0.1677061677061677 | 0.6719734660033168 | 0.40758628553731013 | 0.001 |
7 | 0.19761690497398376 | 0.17463617463617465 | 0.6751762240426747 | 0.4142080471846538 | 0.001 |
8 | 0.19706940650939941 | 0.17636867636867637 | 0.6823529411764706 | 0.42809095916498113 | 0.001 |
9 | 0.19613835215568542 | 0.17636867636867637 | 0.6844589857443328 | 0.43000179684162393 | 0.001 |
10 | 0.19443827867507935 | 0.18052668052668053 | 0.676261056657901 | 0.4264062108185488 | 0.001 |
11 | 0.19399969279766083 | 0.1781011781011781 | 0.6902341199514971 | 0.43914447135579204 | 0.001 |
12 | 0.19451384246349335 | 0.1729036729036729 | 0.6938511326860841 | 0.45234247782022446 | 0.001 |
13 | 0.19363747537136078 | 0.1794871794871795 | 0.6907971453892439 | 0.44605482120784584 | 0.001 |
14 | 0.1931454837322235 | 0.1781011781011781 | 0.6916442548455903 | 0.44244925103284655 | 0.001 |
15 | 0.1935158371925354 | 0.18087318087318088 | 0.6936180088187515 | 0.44307178033824657 | 0.001 |
16 | 0.19309590756893158 | 0.18052668052668053 | 0.6895936942854461 | 0.4428841041517678 | 0.001 |
17 | 0.19311168789863586 | 0.18191268191268192 | 0.6953186376449928 | 0.4411042424961882 | 0.001 |
18 | 0.19081147015094757 | 0.18572418572418573 | 0.6983818770226538 | 0.4490480976278912 | 0.001 |
19 | 0.19249168038368225 | 0.1812196812196812 | 0.6878854936673101 | 0.4428453523216445 | 0.001 |
20 | 0.19134406745433807 | 0.1774081774081774 | 0.6796580216840999 | 0.43568338344914237 | 0.001 |
21 | 0.19149190187454224 | 0.18225918225918225 | 0.6957772621809745 | 0.4381469652060519 | 0.001 |
22 | 0.19192616641521454 | 0.1826056826056826 | 0.7038712011577424 | 0.4534807464842353 | 0.001 |
23 | 0.19255639612674713 | 0.17983367983367984 | 0.6907461850762985 | 0.4363028843794499 | 0.001 |
24 | 0.19186602532863617 | 0.18052668052668053 | 0.6952745610758312 | 0.45443118252910614 | 0.001 |
25 | 0.19193170964717865 | 0.1781011781011781 | 0.6961779911373708 | 0.4465566917300777 | 0.0001 |
26 | 0.19118554890155792 | 0.18225918225918225 | 0.6942802624842929 | 0.441825214268795 | 0.0001 |
27 | 0.19123922288417816 | 0.18087318087318088 | 0.6971996137398262 | 0.449975636684123 | 0.0001 |
28 | 0.19151046872138977 | 0.18572418572418573 | 0.6943913469159402 | 0.44543509037683293 | 0.0001 |
CO2 Emissions
The estimated CO2 emissions for training this model are documented below:
- Emissions: 0.1871415951855612 grams of CO2
- Source: Code Carbon
- Training Type: fine-tuning
- Geographical Location: Brest, France
- Hardware Used: NVIDIA Tesla V100 PCIe 32 Go
Framework Versions
- Transformers: 4.44.2
- Pytorch: 2.4.1+cu121
- Datasets: 3.0.0
- Tokenizers: 0.19.1
- Downloads last month
- 14
Model tree for groderg/Resneteau-50-2024_09_23-batch-size32_freeze
Base model
microsoft/resnet-50