griffio's picture
rotated_maps
86f886c verified
metadata
library_name: peft
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-large-patch16-224-testing-dungeons-lora-23Nov24-009
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: rotated_maps
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - type: accuracy
            value: 0.9629629629629629
            name: Accuracy

vit-large-patch16-224-testing-dungeons-lora-23Nov24-009

This model is a fine-tuned version of google/vit-large-patch16-224 on the rotated_maps dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1605
  • Accuracy: 0.9630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.6667 1 1.4611 0.2963
No log 2.0 3 1.0087 0.5185
No log 2.6667 4 1.5508 0.4074
No log 4.0 6 0.4546 0.8889
No log 4.6667 7 0.4480 0.8148
No log 6.0 9 0.2657 0.8889
0.8959 6.6667 10 0.2433 0.8889
0.8959 8.0 12 0.1605 0.9630

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3