griffio's picture
dungeon-geo-morphs
af449aa verified
---
library_name: transformers
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-large-patch16-224-dungeon-geo-morphs-0-4-29Nov24-002
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: dungeon-geo-morphs
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9964285714285714
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-large-patch16-224-dungeon-geo-morphs-0-4-29Nov24-002
This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the dungeon-geo-morphs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0885
- Accuracy: 0.9964
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.576 | 4.0 | 10 | 1.2765 | 0.5804 |
| 1.0281 | 8.0 | 20 | 0.7736 | 0.8339 |
| 0.594 | 12.0 | 30 | 0.4290 | 0.9196 |
| 0.3375 | 16.0 | 40 | 0.2649 | 0.9661 |
| 0.2094 | 20.0 | 50 | 0.1590 | 0.9857 |
| 0.1342 | 24.0 | 60 | 0.1123 | 0.9929 |
| 0.1041 | 28.0 | 70 | 0.0998 | 0.9929 |
| 0.0832 | 32.0 | 80 | 0.0885 | 0.9964 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3