griffio's picture
Model save
04b2d3b verified
|
raw
history blame
2.32 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-large-patch16-224-dungeon-geo-morphs-0-4-28Nov24-003
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9857142857142858

vit-large-patch16-224-dungeon-geo-morphs-0-4-28Nov24-003

This model is a fine-tuned version of google/vit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0943
  • Accuracy: 0.9857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4912 4.0 10 1.1069 0.6786
0.6967 8.0 20 0.5143 0.9232
0.2492 12.0 30 0.2546 0.9768
0.0819 16.0 40 0.1649 0.975
0.0326 20.0 50 0.1086 0.9875
0.0167 24.0 60 0.0943 0.9857

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3