greenw0lf's picture
Update README.md
cb48697
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_8_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-1b-frisian-cv-8-large-train
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_8_0
          type: common_voice_8_0
          config: fy-NL
          split: validation
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.04206541922582488
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_8_0
          type: common_voice_8_0
          config: fy-NL
          split: test
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.04108252637664402

wav2vec2-large-xls-r-1b-frisian-cv-8-large-train

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_8_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0444
  • Wer: 0.0421

And on the test set:

  • Wer: 0.0411

Model description

This model has been developed for my Master's thesis in "Voice Technology" at Rijksuniversiteit Groningen - Campus Fryslân. It corresponds to experiment 2 where I use as training set all validated data (~ 50 hours) except the test and evaluation sets (~ 4.5 hours each). The number of training hours adds up to 41 hours of Frisian speech.

Intended uses & limitations

The intended use is for recognizing Frisian speech.

Limitations include no LM rescoring and using version 8.0 of Common Voice instead of 13.0.

Training and evaluation data

The evaluation split used is the one available in the Common Voice 8.0 Frisian subset. The train split corresponds to all of the validated data except for the recordings found in the evaluation and test splits.

Training procedure

The script used for training this model can be found in this GitHub repository: link.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 36
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.2522 0.48 400 3.1028 1.0
3.0052 0.97 800 2.9334 1.0
2.0865 1.45 1200 0.7288 0.6646
1.1654 1.93 1600 0.4298 0.4196
0.9665 2.41 2000 0.3134 0.3162
0.7891 2.9 2400 0.2378 0.2587
0.8366 3.38 2800 0.1896 0.2016
0.8606 3.86 3200 0.1647 0.1903
0.7536 4.34 3600 0.1486 0.1573
0.632 4.83 4000 0.1341 0.1450
0.5198 5.31 4400 0.1223 0.1415
0.4998 5.79 4800 0.1155 0.1388
0.4273 6.27 5200 0.1132 0.1302
0.3982 6.76 5600 0.1036 0.1102
0.3964 7.24 6000 0.0988 0.1209
0.3848 7.72 6400 0.0995 0.0985
0.3702 8.2 6800 0.0969 0.0945
0.3612 8.69 7200 0.0899 0.0967
0.3518 9.17 7600 0.0856 0.1061
0.3371 9.65 8000 0.0902 0.0875
0.3295 10.13 8400 0.0819 0.0914
0.3157 10.62 8800 0.0785 0.0937
0.3025 11.1 9200 0.0782 0.0804
0.3092 11.58 9600 0.0758 0.0845
0.301 12.06 10000 0.0775 0.0847
0.3016 12.55 10400 0.0730 0.0776
0.2892 13.03 10800 0.0719 0.0735
0.283 13.51 11200 0.0728 0.0727
0.2806 13.99 11600 0.0694 0.0710
0.2639 14.48 12000 0.0705 0.0703
0.2606 14.96 12400 0.0652 0.0668
0.2595 15.44 12800 0.0638 0.0691
0.2611 15.92 13200 0.0636 0.0713
0.246 16.41 13600 0.0632 0.0653
0.2544 16.89 14000 0.0605 0.0638
0.2509 17.37 14400 0.0640 0.0646
0.2381 17.85 14800 0.0604 0.0663
0.2336 18.34 15200 0.0590 0.0628
0.2285 18.82 15600 0.0580 0.0612
0.2362 19.3 16000 0.0655 0.0638
0.2279 19.78 16400 0.0611 0.0669
0.2228 20.27 16800 0.0606 0.0621
0.2242 20.75 17200 0.0560 0.0575
0.2053 21.23 17600 0.0571 0.0572
0.2097 21.71 18000 0.0557 0.0555
0.2072 22.2 18400 0.0563 0.0576
0.2076 22.68 18800 0.0532 0.0562
0.2026 23.16 19200 0.0531 0.0540
0.1941 23.64 19600 0.0535 0.0534
0.1983 24.13 20000 0.0528 0.0541
0.2075 24.61 20400 0.0536 0.0538
0.1937 25.09 20800 0.0532 0.0569
0.1943 25.57 21200 0.0511 0.0507
0.1844 26.06 21600 0.0521 0.0521
0.181 26.54 22000 0.0506 0.0507
0.1877 27.02 22400 0.0529 0.0510
0.1825 27.5 22800 0.0527 0.0498
0.1872 27.99 23200 0.0506 0.0485
0.1857 28.47 23600 0.0497 0.0492
0.1766 28.95 24000 0.0504 0.0488
0.1756 29.43 24400 0.0496 0.0482
0.1701 29.92 24800 0.0479 0.0479
0.1717 30.4 25200 0.0499 0.0468
0.1624 30.88 25600 0.0492 0.0466
0.1671 31.36 26000 0.0490 0.0461
0.1704 31.85 26400 0.0482 0.0452
0.1653 32.33 26800 0.0467 0.0446
0.158 32.81 27200 0.0465 0.0449
0.1599 33.29 27600 0.0473 0.0445
0.1558 33.78 28000 0.0475 0.0453
0.1556 34.26 28400 0.0462 0.0445
0.1591 34.74 28800 0.0464 0.0431
0.1544 35.22 29200 0.0476 0.0433
0.1576 35.71 29600 0.0466 0.0434
0.1507 36.19 30000 0.0451 0.0435
0.1501 36.67 30400 0.0453 0.0429
0.1482 37.15 30800 0.0439 0.0432
0.1518 37.64 31200 0.0446 0.0424
0.1454 38.12 31600 0.0449 0.0417
0.145 38.6 32000 0.0440 0.0421
0.147 39.08 32400 0.0441 0.0424
0.141 39.57 32800 0.0444 0.0421

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3