Text Generation
Transformers
Inference Endpoints
medit-xxl / README.md
dimalik
add more examples
e84d086
|
raw
history blame
2.41 kB
---
license: cc-by-nc-sa-4.0
datasets:
- wi_locness
- matejklemen/falko_merlin
- paws
- paws-x
- asset
language:
- en
- de
- es
- ar
- ja
- ko
- zh
metrics:
- bleu
- rouge
- sari
- accuracy
library_name: transformers
---
# Model Card for mEdIT-xxl
The `medit-xxl` model was obtained by fine-tuning the `MBZUAI/bactrian-x-llama-13b-lora` model on the mEdIT dataset.
**Paper:** mEdIT: Multilingual Text Editing via Instruction Tuning
**Authors:** Vipul Raheja, Dimitris Alikaniotis, Vivek Kulkarni, Bashar Alhafni, Dhruv Kumar
## Model Details
### Model Description
- **Language(s) (NLP)**: Arabic, Chinese, English, German, Japanese, Korean, Spanish
- **Finetuned from model:** `MBZUAI/bactrian-x-llama-13b-lora`
### Model Sources
- **Repository:** https://github.com/vipulraheja/medit
- **Paper:** TBA
## How to use
### Instruction format
Adherence to the following instruction format is essential; failure to do so may result in the model producing less-than-ideal results.
```
instruction_tokens = [
"Instruction",
"Anweisung",
...
]
input_tokens = [
"Input",
"Aporte",
...
]
output_tokens = [
"Output",
"Produzione",
...
]
task_descriptions = [
"Fix grammatical errors in this sentence", # <-- GEC task
"Umschreiben Sie den Satz", # <-- Paraphrasing
...
]
The entire list of possible instruction, input, output tokens, and task descriptions can be found in the Appendix of our paper.
prompt_template = """### <instruction_token>:\n<task description>\n### <input_token>:\n<input>\n### <output_token>:\n\n"""
Note that the tokens and the task description need not be in the language of the input.
```
### Run the model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "grammarly/medit-xxl"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# English GEC
prompt = '### 命什:\nζ–‡η« γ‚’ζ–‡ζ³•ηš„γ«γ™γ‚‹\n### ε…₯εŠ›:\nI has small cat ,\n### ε‡ΊεŠ›:\n\n'
inputs = tokenizer(prompt, return_tensors='pt')
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)
# --> I have a small cat ,
# German GEC
prompt = '### 命什:\nζ–‡η« γ‚’ζ–‡ζ³•ηš„γ«γ™γ‚‹\n### ε…₯εŠ›:\nIch haben eines kleines Katze ,\n### ε‡ΊεŠ›:\n\n'
# ...
# --> Ich habe eine kleine Katze ,
```