|
--- |
|
license: cc-by-nc-sa-4.0 |
|
datasets: |
|
- wi_locness |
|
- matejklemen/falko_merlin |
|
- paws |
|
- paws-x |
|
- asset |
|
language: |
|
- en |
|
- de |
|
- es |
|
- ar |
|
- ja |
|
- ko |
|
- zh |
|
metrics: |
|
- bleu |
|
- rouge |
|
- sari |
|
- accuracy |
|
library_name: transformers |
|
--- |
|
|
|
# Model Card for mEdIT-xxl |
|
|
|
The `medit-xxl` model was obtained by fine-tuning the `MBZUAI/bactrian-x-llama-13b-lora` model on the mEdIT dataset. |
|
|
|
**Paper:** mEdIT: Multilingual Text Editing via Instruction Tuning |
|
|
|
**Authors:** Vipul Raheja, Dimitris Alikaniotis, Vivek Kulkarni, Bashar Alhafni, Dhruv Kumar |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Language(s) (NLP)**: Arabic, Chinese, English, German, Japanese, Korean, Spanish |
|
- **Finetuned from model:** `MBZUAI/bactrian-x-llama-13b-lora` |
|
|
|
### Model Sources |
|
|
|
- **Repository:** https://github.com/vipulraheja/medit |
|
- **Paper:** TBA |
|
|
|
## How to use |
|
|
|
### Instruction format |
|
|
|
Adherence to the following instruction format is essential; failure to do so may result in the model producing less-than-ideal results. |
|
|
|
|
|
``` |
|
instruction_tokens = [ |
|
"Instruction", |
|
"Anweisung", |
|
... |
|
] |
|
|
|
input_tokens = [ |
|
"Input", |
|
"Aporte", |
|
... |
|
] |
|
|
|
output_tokens = [ |
|
"Output", |
|
"Produzione", |
|
... |
|
] |
|
|
|
task_descriptions = [ |
|
"Fix grammatical errors in this sentence", # <-- GEC task |
|
"Umschreiben Sie den Satz", # <-- Paraphrasing |
|
... |
|
] |
|
|
|
The entire list of possible instruction, input, output tokens, and task descriptions can be found in the Appendix of our paper. |
|
|
|
|
|
prompt_template = """### <instruction_token>:\n<task description>\n### <input_token>:\n<input>\n### <output_token>:\n\n""" |
|
|
|
Note that the tokens and the task description need not be in the language of the input. |
|
``` |
|
|
|
### Run the model |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "grammarly/medit-xxl" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
# English GEC |
|
prompt = '### ε½δ»€:\nζη« γζζ³ηγ«γγ\n### ε
₯ε:\nI has small cat ,\n### εΊε:\n\n' |
|
|
|
inputs = tokenizer(prompt, return_tensors='pt') |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=20) |
|
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
# --> I have a small cat , |
|
|
|
# German GEC |
|
|
|
prompt = '### ε½δ»€:\nζη« γζζ³ηγ«γγ\n### ε
₯ε:\nIch haben eines kleines Katze ,\n### εΊε:\n\n' |
|
|
|
# ... |
|
# --> Ich habe eine kleine Katze , |
|
``` |
|
|