|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- asset |
|
- wi_locness |
|
- GEM/wiki_auto_asset_turk |
|
- discofuse |
|
- zaemyung/IteraTeR_plus |
|
language: |
|
- en |
|
metrics: |
|
- sari |
|
- bleu |
|
- accuracy |
|
--- |
|
# Model Card for CoEdIT-XL |
|
|
|
This model was obtained by fine-tuning google/flan-t5-xl on the CoEdIT dataset. |
|
|
|
Paper: CoEdIT: ext Editing by Task-Specific Instruction Tuning |
|
Authors: Vipul Raheja, Dhruv Kumar, Ryan Koo, Dongyeop Kang |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Language(s) (NLP)**: English |
|
- **Finetuned from model:** google/flan-t5-xl |
|
|
|
### Model Sources [optional] |
|
|
|
- **Repository:** https://github.com/vipulraheja/coedit |
|
- **Paper [optional]:** [More Information Needed] |
|
|
|
## How to use |
|
We make available the models presented in our paper. |
|
|
|
<table> |
|
<tr> |
|
<th>Model</th> |
|
<th>Number of parameters</th> |
|
</tr> |
|
<tr> |
|
<td>CoEdIT-large</td> |
|
<td>770M</td> |
|
</tr> |
|
<tr> |
|
<td>CoEdIT-xl</td> |
|
<td>3B</td> |
|
</tr> |
|
<tr> |
|
<td>CoEdIT-xxl</td> |
|
<td>11B</td> |
|
</tr> |
|
</table> |
|
|
|
|
|
## Uses |
|
|
|
## Text Revision Task |
|
Given an edit instruction and an original text, our model can generate the edited version of the text.<br> |
|
|
|
![task_specs](https://huggingface.co/grammarly/coedit-xl/resolve/main/Screen%20Shot%202023-05-12%20at%203.36.37%20PM.png) |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoTokenizer, T5ForConditionalGeneration |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("grammarly/coedit-xl") |
|
model = T5ForConditionalGeneration.from_pretrained("grammarly/coedit-xl") |
|
input_text = |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids |
|
outputs = model.generate(input_ids, max_length=256) |
|
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)[0] |
|
|
|
before_input = 'Fix grammatical errors in this sentence: New kinds of vehicles will be invented with new technology than today.' |
|
model_input = tokenizer(before_input, return_tensors='pt') |
|
model_outputs = model.generate(**model_input, num_beams=8, max_length=1024) |
|
after_text = tokenizer.batch_decode(model_outputs, skip_special_tokens=True)[0] |
|
``` |
|
|
|
|
|
#### Software |
|
https://github.com/vipulraheja/coedit |
|
|
|
## Citation |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |