|
--- |
|
language: en |
|
license: apache-2.0 |
|
datasets: |
|
- bookcorpus |
|
- wikipedia |
|
--- |
|
|
|
# BERT large model (uncased) whole word masking finetuned on SQuAD |
|
|
|
Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in |
|
[this paper](https://arxiv.org/abs/1810.04805) and first released in |
|
[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference |
|
between english and English. |
|
|
|
Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same. |
|
|
|
The training is identical -- each masked WordPiece token is predicted independently. |
|
|
|
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning. |
|
|
|
Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by |
|
the Hugging Face team. |
|
|
|
## Model description |
|
|
|
BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it |
|
was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of |
|
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it |
|
was pretrained with two objectives: |
|
|
|
- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run |
|
the entire masked sentence through the model and has to predict the masked words. This is different from traditional |
|
recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like |
|
GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the |
|
sentence. |
|
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes |
|
they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to |
|
predict if the two sentences were following each other or not. |
|
|
|
This way, the model learns an inner representation of the English language that can then be used to extract features |
|
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard |
|
classifier using the features produced by the BERT model as inputs. |
|
|
|
This model has the following configuration: |
|
|
|
- 24-layer |
|
- 1024 hidden dimension |
|
- 16 attention heads |
|
- 336M parameters. |
|
|
|
## Intended uses & limitations |
|
This model should be used as a question-answering model. You may use it in a question answering pipeline, or use it to output raw results given a query and a context. You may see other use cases in the [task summary](https://huggingface.co/transformers/task_summary.html#extractive-question-answering) of the transformers documentation.## Training data |
|
|
|
The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 |
|
unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and |
|
headers). |
|
|
|
## Training procedure |
|
|
|
### Preprocessing |
|
|
|
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are |
|
then of the form: |
|
|
|
``` |
|
[CLS] Sentence A [SEP] Sentence B [SEP] |
|
``` |
|
|
|
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in |
|
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a |
|
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two |
|
"sentences" has a combined length of less than 512 tokens. |
|
|
|
The details of the masking procedure for each sentence are the following: |
|
- 15% of the tokens are masked. |
|
- In 80% of the cases, the masked tokens are replaced by `[MASK]`. |
|
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. |
|
- In the 10% remaining cases, the masked tokens are left as is. |
|
|
|
### Pretraining |
|
|
|
The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size |
|
of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer |
|
used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, |
|
learning rate warmup for 10,000 steps and linear decay of the learning rate after. |
|
|
|
### Fine-tuning |
|
|
|
After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. In order to reproduce the training, you may use the following command: |
|
``` |
|
python -m torch.distributed.launch --nproc_per_node=8 ./examples/question-answering/run_qa.py \ |
|
--model_name_or_path bert-large-uncased-whole-word-masking \ |
|
--dataset_name squad \ |
|
--do_train \ |
|
--do_eval \ |
|
--learning_rate 3e-5 \ |
|
--num_train_epochs 2 \ |
|
--max_seq_length 384 \ |
|
--doc_stride 128 \ |
|
--output_dir ./examples/models/wwm_uncased_finetuned_squad/ \ |
|
--per_device_eval_batch_size=3 \ |
|
--per_device_train_batch_size=3 \ |
|
``` |
|
|
|
## Evaluation results |
|
|
|
The results obtained are the following: |
|
|
|
``` |
|
f1 = 93.15 |
|
exact_match = 86.91 |
|
``` |
|
|
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@article{DBLP:journals/corr/abs-1810-04805, |
|
author = {Jacob Devlin and |
|
Ming{-}Wei Chang and |
|
Kenton Lee and |
|
Kristina Toutanova}, |
|
title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language |
|
Understanding}, |
|
journal = {CoRR}, |
|
volume = {abs/1810.04805}, |
|
year = {2018}, |
|
url = {http://arxiv.org/abs/1810.04805}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1810.04805}, |
|
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
``` |