metadata
library_name: transformers
tags:
- generated_from_trainer
datasets:
- gokulsrinivasagan/processed_book_corpus-ld
metrics:
- accuracy
model-index:
- name: distilbert_lda_v1_book
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: gokulsrinivasagan/processed_book_corpus-ld
type: gokulsrinivasagan/processed_book_corpus-ld
metrics:
- name: Accuracy
type: accuracy
value: 0.731461833901348
distilbert_lda_v1_book
This model is a fine-tuned version of on the gokulsrinivasagan/processed_book_corpus-ld dataset. It achieves the following results on the evaluation set:
- Loss: 3.1051
- Accuracy: 0.7315
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 10
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
7.6644 | 0.4215 | 10000 | 7.4872 | 0.1609 |
4.6569 | 0.8431 | 20000 | 4.2985 | 0.5609 |
4.2453 | 1.2646 | 30000 | 3.9352 | 0.6094 |
4.0748 | 1.6861 | 40000 | 3.7740 | 0.6315 |
3.9464 | 2.1077 | 50000 | 3.6555 | 0.6453 |
3.8728 | 2.5292 | 60000 | 3.5809 | 0.6566 |
3.814 | 2.9507 | 70000 | 3.5364 | 0.6635 |
3.771 | 3.3723 | 80000 | 3.4922 | 0.6700 |
3.735 | 3.7938 | 90000 | 3.4582 | 0.6753 |
3.7016 | 4.2153 | 100000 | 3.4345 | 0.6790 |
3.681 | 4.6369 | 110000 | 3.4123 | 0.6824 |
3.6573 | 5.0584 | 120000 | 3.3854 | 0.6861 |
3.6373 | 5.4799 | 130000 | 3.3676 | 0.6889 |
3.6238 | 5.9014 | 140000 | 3.3501 | 0.6915 |
3.6004 | 6.3230 | 150000 | 3.3354 | 0.6939 |
3.5931 | 6.7445 | 160000 | 3.3241 | 0.6959 |
3.5703 | 7.1660 | 170000 | 3.3077 | 0.6986 |
3.5616 | 7.5876 | 180000 | 3.3021 | 0.6993 |
3.5502 | 8.0091 | 190000 | 3.2892 | 0.7014 |
3.5388 | 8.4306 | 200000 | 3.2785 | 0.7033 |
3.5264 | 8.8522 | 210000 | 3.2708 | 0.7046 |
3.5212 | 9.2737 | 220000 | 3.2598 | 0.7061 |
3.5045 | 9.6952 | 230000 | 3.2526 | 0.7073 |
3.4939 | 10.1168 | 240000 | 3.2483 | 0.7087 |
3.4934 | 10.5383 | 250000 | 3.2361 | 0.7101 |
3.4833 | 10.9598 | 260000 | 3.2301 | 0.7111 |
3.4747 | 11.3814 | 270000 | 3.2252 | 0.7120 |
3.4753 | 11.8029 | 280000 | 3.2172 | 0.7129 |
3.46 | 12.2244 | 290000 | 3.2102 | 0.7141 |
3.457 | 12.6460 | 300000 | 3.2041 | 0.7154 |
3.4464 | 13.0675 | 310000 | 3.1984 | 0.7163 |
3.4446 | 13.4890 | 320000 | 3.1933 | 0.7171 |
3.4398 | 13.9106 | 330000 | 3.1897 | 0.7174 |
3.436 | 14.3321 | 340000 | 3.1838 | 0.7185 |
3.4289 | 14.7536 | 350000 | 3.1784 | 0.7193 |
3.4223 | 15.1751 | 360000 | 3.1748 | 0.7198 |
3.4187 | 15.5967 | 370000 | 3.1676 | 0.7208 |
3.414 | 16.0182 | 380000 | 3.1651 | 0.7216 |
3.409 | 16.4397 | 390000 | 3.1609 | 0.7222 |
3.4022 | 16.8613 | 400000 | 3.1584 | 0.7226 |
3.4019 | 17.2828 | 410000 | 3.1511 | 0.7238 |
3.395 | 17.7043 | 420000 | 3.1483 | 0.7241 |
3.3878 | 18.1259 | 430000 | 3.1473 | 0.7248 |
3.3833 | 18.5474 | 440000 | 3.1439 | 0.7250 |
3.3828 | 18.9689 | 450000 | 3.1381 | 0.7260 |
3.3795 | 19.3905 | 460000 | 3.1349 | 0.7265 |
3.3746 | 19.8120 | 470000 | 3.1318 | 0.7272 |
3.3704 | 20.2335 | 480000 | 3.1287 | 0.7275 |
3.366 | 20.6551 | 490000 | 3.1248 | 0.7283 |
3.3621 | 21.0766 | 500000 | 3.1214 | 0.7286 |
3.3582 | 21.4981 | 510000 | 3.1189 | 0.7291 |
3.3547 | 21.9197 | 520000 | 3.1174 | 0.7294 |
3.3561 | 22.3412 | 530000 | 3.1152 | 0.7298 |
3.3516 | 22.7627 | 540000 | 3.1145 | 0.7300 |
3.3517 | 23.1843 | 550000 | 3.1110 | 0.7303 |
3.349 | 23.6058 | 560000 | 3.1087 | 0.7309 |
3.3446 | 24.0273 | 570000 | 3.1080 | 0.7311 |
3.342 | 24.4488 | 580000 | 3.1042 | 0.7317 |
3.3397 | 24.8704 | 590000 | 3.1048 | 0.7314 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.2.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1