gokulsrinivasagan's picture
End of training
50d0cc8 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - gokulsrinivasagan/processed_book_corpus-ld-20
metrics:
  - accuracy
model-index:
  - name: distilbert_lda_20_v1_book
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: gokulsrinivasagan/processed_book_corpus-ld-20
          type: gokulsrinivasagan/processed_book_corpus-ld-20
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7289610693406705

distilbert_lda_20_v1_book

This model is a fine-tuned version of on the gokulsrinivasagan/processed_book_corpus-ld-20 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5714
  • Accuracy: 0.7290

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.2789 0.4215 10000 6.5733 0.3678
4.955 0.8431 20000 4.5929 0.5844
4.6182 1.2646 30000 4.3014 0.6199
4.4751 1.6861 40000 4.1692 0.6387
4.3802 2.1077 50000 4.0856 0.6498
4.3162 2.5292 60000 4.0203 0.6598
4.2637 2.9507 70000 3.9798 0.6658
4.225 3.3723 80000 3.9419 0.6716
4.1939 3.7938 90000 3.9101 0.6761
4.1637 4.2153 100000 3.8892 0.6795
4.1428 4.6369 110000 3.8674 0.6830
4.1204 5.0584 120000 3.8432 0.6860
4.1028 5.4799 130000 3.8268 0.6887
4.091 5.9014 140000 3.8095 0.6912
4.0686 6.3230 150000 3.7973 0.6936
4.0613 6.7445 160000 3.7854 0.6952
4.0375 7.1660 170000 3.7712 0.6976
4.0301 7.5876 180000 3.7640 0.6984
4.0202 8.0091 190000 3.7519 0.7002
4.0102 8.4306 200000 3.7429 0.7018
3.9985 8.8522 210000 3.7357 0.7031
3.9959 9.2737 220000 3.7270 0.7044
3.9781 9.6952 230000 3.7161 0.7058
3.9676 10.1168 240000 3.7122 0.7069
3.9672 10.5383 250000 3.7028 0.7080
3.9573 10.9598 260000 3.6969 0.7093
3.9497 11.3814 270000 3.6923 0.7098
3.9483 11.8029 280000 3.6841 0.7111
3.9348 12.2244 290000 3.6786 0.7119
3.9304 12.6460 300000 3.6703 0.7132
3.9205 13.0675 310000 3.6666 0.7139
3.9202 13.4890 320000 3.6620 0.7146
3.9152 13.9106 330000 3.6581 0.7152
3.9105 14.3321 340000 3.6501 0.7167
3.9024 14.7536 350000 3.6466 0.7168
3.8976 15.1751 360000 3.6444 0.7173
3.8948 15.5967 370000 3.6362 0.7186
3.8875 16.0182 380000 3.6316 0.7193
3.8842 16.4397 390000 3.6280 0.7199
3.8773 16.8613 400000 3.6256 0.7203
3.8766 17.2828 410000 3.6190 0.7214
3.8712 17.7043 420000 3.6155 0.7220
3.8638 18.1259 430000 3.6134 0.7225
3.8588 18.5474 440000 3.6109 0.7228
3.8586 18.9689 450000 3.6057 0.7237
3.8534 19.3905 460000 3.6018 0.7241
3.8508 19.8120 470000 3.5988 0.7247
3.8443 20.2335 480000 3.5953 0.7252
3.8393 20.6551 490000 3.5921 0.7257
3.8366 21.0766 500000 3.5886 0.7260
3.8324 21.4981 510000 3.5857 0.7266
3.8286 21.9197 520000 3.5843 0.7269
3.8317 22.3412 530000 3.5818 0.7273
3.8243 22.7627 540000 3.5811 0.7276
3.825 23.1843 550000 3.5771 0.7279
3.8227 23.6058 560000 3.5752 0.7284
3.8173 24.0273 570000 3.5741 0.7286
3.8174 24.4488 580000 3.5706 0.7291
3.8141 24.8704 590000 3.5708 0.7289

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3