metadata
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/distilbert_lda_100_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_lda_100_v1_sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8268348623853211
distilbert_lda_100_v1_sst2
This model is a fine-tuned version of gokulsrinivasagan/distilbert_lda_100_v1 on the GLUE SST2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3907
- Accuracy: 0.8268
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3896 | 1.0 | 264 | 0.3907 | 0.8268 |
0.2205 | 2.0 | 528 | 0.4041 | 0.8349 |
0.1574 | 3.0 | 792 | 0.5309 | 0.8165 |
0.1151 | 4.0 | 1056 | 0.5299 | 0.8211 |
0.0891 | 5.0 | 1320 | 0.5801 | 0.8372 |
0.0677 | 6.0 | 1584 | 0.6953 | 0.8234 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3