metadata
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/distilbert_lda_100_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_lda_100_v1_rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE RTE
type: glue
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.5451263537906137
distilbert_lda_100_v1_rte
This model is a fine-tuned version of gokulsrinivasagan/distilbert_lda_100_v1 on the GLUE RTE dataset. It achieves the following results on the evaluation set:
- Loss: 0.6952
- Accuracy: 0.5451
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6947 | 1.0 | 10 | 0.6952 | 0.5451 |
0.6851 | 2.0 | 20 | 0.7430 | 0.4838 |
0.6787 | 3.0 | 30 | 0.7019 | 0.5343 |
0.634 | 4.0 | 40 | 0.7290 | 0.5054 |
0.5534 | 5.0 | 50 | 0.8035 | 0.4874 |
0.4215 | 6.0 | 60 | 1.0177 | 0.4693 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3