metadata
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_tiny_lda_5_v1_book
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_tiny_lda_5_v1_book_qnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.832875709317225
bert_tiny_lda_5_v1_book_qnli
This model is a fine-tuned version of gokulsrinivasagan/bert_tiny_lda_5_v1_book on the GLUE QNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.3795
- Accuracy: 0.8329
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5111 | 1.0 | 410 | 0.4212 | 0.8082 |
0.4041 | 2.0 | 820 | 0.3891 | 0.8252 |
0.3396 | 3.0 | 1230 | 0.3795 | 0.8329 |
0.2836 | 4.0 | 1640 | 0.4442 | 0.8228 |
0.2279 | 5.0 | 2050 | 0.4809 | 0.8155 |
0.1855 | 6.0 | 2460 | 0.5276 | 0.8263 |
0.1468 | 7.0 | 2870 | 0.5409 | 0.8234 |
0.1206 | 8.0 | 3280 | 0.6156 | 0.8171 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3