gokulsrinivasagan's picture
End of training
384436d verified
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_tiny_lda_5_v1_book
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_tiny_lda_5_v1_book_mnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MNLI
type: glue
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.7597640358014646
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_tiny_lda_5_v1_book_mnli
This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1_book](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1_book) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6047
- Accuracy: 0.7598
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7793 | 1.0 | 1534 | 0.6779 | 0.7105 |
| 0.6313 | 2.0 | 3068 | 0.6316 | 0.7361 |
| 0.5474 | 3.0 | 4602 | 0.6253 | 0.7505 |
| 0.4766 | 4.0 | 6136 | 0.6401 | 0.7538 |
| 0.414 | 5.0 | 7670 | 0.6470 | 0.7560 |
| 0.3555 | 6.0 | 9204 | 0.7034 | 0.7555 |
| 0.304 | 7.0 | 10738 | 0.7440 | 0.7554 |
| 0.2609 | 8.0 | 12272 | 0.8077 | 0.7532 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3