bert_base_lda_book / README.md
gokulsrinivasagan's picture
End of training
8fd3cad verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - gokulsrinivasagan/processed_book_corpus-ld
metrics:
  - accuracy
model-index:
  - name: bert_base_lda_book
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: gokulsrinivasagan/processed_book_corpus-ld
          type: gokulsrinivasagan/processed_book_corpus-ld
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7611995452621755

bert_base_lda_book

This model is a fine-tuned version of on the gokulsrinivasagan/processed_book_corpus-ld dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9459
  • Accuracy: 0.7612

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 10
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.6611 0.4215 10000 7.4831 0.1626
7.54 0.8431 20000 7.3893 0.1640
7.477 1.2646 30000 7.3399 0.1663
7.4478 1.6861 40000 7.3119 0.1667
5.084 2.1077 50000 4.6037 0.4982
4.1458 2.5292 60000 3.8418 0.6153
3.9219 2.9507 70000 3.6449 0.6468
3.8057 3.3723 80000 3.5337 0.6641
3.7243 3.7938 90000 3.4573 0.6761
3.6613 4.2153 100000 3.4046 0.6845
3.6198 4.6369 110000 3.3638 0.6910
3.5769 5.0584 120000 3.3235 0.6972
3.5446 5.4799 130000 3.2929 0.7021
3.5226 5.9014 140000 3.2670 0.7062
3.493 6.3230 150000 3.2465 0.7099
3.4784 6.7445 160000 3.2292 0.7130
3.4465 7.1660 170000 3.2074 0.7165
3.433 7.5876 180000 3.1960 0.7186
3.4171 8.0091 190000 3.1785 0.7212
3.4016 8.4306 200000 3.1640 0.7237
3.3853 8.8522 210000 3.1538 0.7257
3.3776 9.2737 220000 3.1404 0.7278
3.3568 9.6952 230000 3.1291 0.7295
3.3441 10.1168 240000 3.1205 0.7315
3.341 10.5383 250000 3.1095 0.7328
3.3292 10.9598 260000 3.1005 0.7345
3.3173 11.3814 270000 3.0944 0.7355
3.3162 11.8029 280000 3.0838 0.7373
3.298 12.2244 290000 3.0764 0.7386
3.293 12.6460 300000 3.0676 0.7400
3.2808 13.0675 310000 3.0613 0.7413
3.2786 13.4890 320000 3.0542 0.7423
3.2717 13.9106 330000 3.0505 0.7432
3.266 14.3321 340000 3.0427 0.7445
3.2583 14.7536 350000 3.0360 0.7454
3.2508 15.1751 360000 3.0327 0.7461
3.2454 15.5967 370000 3.0232 0.7474
3.2386 16.0182 380000 3.0186 0.7484
3.2334 16.4397 390000 3.0147 0.7492
3.2251 16.8613 400000 3.0106 0.7499
3.2228 17.2828 410000 3.0035 0.7511
3.2162 17.7043 420000 3.0003 0.7517
3.2079 18.1259 430000 2.9971 0.7524
3.2024 18.5474 440000 2.9928 0.7530
3.2014 18.9689 450000 2.9856 0.7541
3.1962 19.3905 460000 2.9826 0.7547
3.1917 19.8120 470000 2.9786 0.7555
3.1854 20.2335 480000 2.9755 0.7561
3.18 20.6551 490000 2.9711 0.7567
3.1744 21.0766 500000 2.9676 0.7573
3.1714 21.4981 510000 2.9635 0.7580
3.1664 21.9197 520000 2.9616 0.7583
3.1674 22.3412 530000 2.9592 0.7588
3.1614 22.7627 540000 2.9579 0.7591
3.1616 23.1843 550000 2.9536 0.7597
3.1579 23.6058 560000 2.9513 0.7603
3.154 24.0273 570000 2.9501 0.7605
3.1504 24.4488 580000 2.9464 0.7610
3.1482 24.8704 590000 2.9464 0.7610

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.1