gokulsrinivasagan's picture
End of training
1cd6b70 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - gokulsrinivasagan/processed_book_corpus-ld-5
metrics:
  - accuracy
model-index:
  - name: bert_base_lda_5_v1_book
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: gokulsrinivasagan/processed_book_corpus-ld-5
          type: gokulsrinivasagan/processed_book_corpus-ld-5
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7558573418429354

bert_base_lda_5_v1_book

This model is a fine-tuned version of on the gokulsrinivasagan/processed_book_corpus-ld-5 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4588
  • Accuracy: 0.7559

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.0997 0.4215 10000 6.9318 0.1639
6.9855 0.8431 20000 6.8420 0.1652
6.9276 1.2646 30000 6.7965 0.1662
6.8979 1.6861 40000 6.7707 0.1664
6.8708 2.1077 50000 6.7510 0.1673
6.8545 2.5292 60000 6.7322 0.1682
4.1528 2.9507 70000 3.8084 0.5410
3.5714 3.3723 80000 3.2838 0.6196
3.3831 3.7938 90000 3.1109 0.6470
3.2724 4.2153 100000 3.0118 0.6628
3.2036 4.6369 110000 2.9437 0.6732
3.1442 5.0584 120000 2.8917 0.6821
3.0973 5.4799 130000 2.8480 0.6892
3.0658 5.9014 140000 2.8130 0.6946
3.03 6.3230 150000 2.7858 0.6993
3.0096 6.7445 160000 2.7617 0.7035
2.9758 7.1660 170000 2.7381 0.7077
2.9593 7.5876 180000 2.7242 0.7101
2.9411 8.0091 190000 2.7034 0.7130
2.923 8.4306 200000 2.6897 0.7158
2.9048 8.8522 210000 2.6765 0.7181
2.8966 9.2737 220000 2.6622 0.7204
2.8762 9.6952 230000 2.6505 0.7223
2.8607 10.1168 240000 2.6398 0.7245
2.8571 10.5383 250000 2.6271 0.7262
2.8425 10.9598 260000 2.6175 0.7280
2.8318 11.3814 270000 2.6108 0.7292
2.8289 11.8029 280000 2.6007 0.7311
2.8124 12.2244 290000 2.5929 0.7324
2.8057 12.6460 300000 2.5821 0.7343
2.7945 13.0675 310000 2.5765 0.7354
2.7875 13.4890 320000 2.5697 0.7366
2.782 13.9106 330000 2.5634 0.7373
2.7765 14.3321 340000 2.5552 0.7390
2.7667 14.7536 350000 2.5493 0.7398
2.7611 15.1751 360000 2.5438 0.7407
2.7551 15.5967 370000 2.5371 0.7419
2.7481 16.0182 380000 2.5313 0.7430
2.7426 16.4397 390000 2.5264 0.7439
2.7361 16.8613 400000 2.5229 0.7447
2.7309 17.2828 410000 2.5152 0.7458
2.7245 17.7043 420000 2.5121 0.7467
2.7188 18.1259 430000 2.5086 0.7471
2.7113 18.5474 440000 2.5051 0.7478
2.7108 18.9689 450000 2.4989 0.7489
2.7047 19.3905 460000 2.4949 0.7496
2.7021 19.8120 470000 2.4909 0.7502
2.6941 20.2335 480000 2.4869 0.7509
2.6883 20.6551 490000 2.4828 0.7516
2.6843 21.0766 500000 2.4785 0.7522
2.681 21.4981 510000 2.4755 0.7530
2.6756 21.9197 520000 2.4729 0.7535
2.6757 22.3412 530000 2.4707 0.7539
2.6705 22.7627 540000 2.4694 0.7541
2.6708 23.1843 550000 2.4654 0.7545
2.6665 23.6058 560000 2.4626 0.7553
2.6622 24.0273 570000 2.4618 0.7555
2.6612 24.4488 580000 2.4580 0.7561
2.6573 24.8704 590000 2.4581 0.7559

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3