gokulsrinivasagan's picture
End of training
a2e374a verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - gokulsrinivasagan/processed_book_corpus-ld-20
metrics:
  - accuracy
model-index:
  - name: bert_base_lda_20_v1_book
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: gokulsrinivasagan/processed_book_corpus-ld-20
          type: gokulsrinivasagan/processed_book_corpus-ld-20
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7595563359244226

bert_base_lda_20_v1_book

This model is a fine-tuned version of on the gokulsrinivasagan/processed_book_corpus-ld-20 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4102
  • Accuracy: 0.7596

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
8.1966 0.4215 10000 8.0049 0.1640
8.0473 0.8431 20000 7.8939 0.1656
6.9645 1.2646 30000 6.4681 0.3352
4.9295 1.6861 40000 4.5709 0.5785
4.5377 2.1077 50000 4.2350 0.6289
4.3734 2.5292 60000 4.0854 0.6527
4.2676 2.9507 70000 3.9894 0.6667
4.1937 3.3723 80000 3.9218 0.6772
4.1383 3.7938 90000 3.8696 0.6855
4.0903 4.2153 100000 3.8305 0.6918
4.0556 4.6369 110000 3.7986 0.6968
4.0202 5.0584 120000 3.7627 0.7016
3.9954 5.4799 130000 3.7404 0.7054
3.9765 5.9014 140000 3.7157 0.7093
3.9475 6.3230 150000 3.6981 0.7121
3.934 6.7445 160000 3.6797 0.7152
3.9051 7.1660 170000 3.6612 0.7182
3.8964 7.5876 180000 3.6575 0.7176
3.8816 8.0091 190000 3.6411 0.7198
3.866 8.4306 200000 3.6233 0.7243
3.8514 8.8522 210000 3.6129 0.7259
3.8458 9.2737 220000 3.6029 0.7278
3.8295 9.6952 230000 3.5904 0.7293
3.8176 10.1168 240000 3.5856 0.7307
3.8131 10.5383 250000 3.5751 0.7319
3.7999 10.9598 260000 3.5652 0.7337
3.7893 11.3814 270000 3.5577 0.7348
3.7844 11.8029 280000 3.5480 0.7366
3.7698 12.2244 290000 3.5411 0.7377
3.7647 12.6460 300000 3.5322 0.7390
3.752 13.0675 310000 3.5254 0.7403
3.7505 13.4890 320000 3.5207 0.7412
3.7444 13.9106 330000 3.5145 0.7421
3.737 14.3321 340000 3.5068 0.7435
3.728 14.7536 350000 3.5010 0.7442
3.7219 15.1751 360000 3.4959 0.7450
3.7175 15.5967 370000 3.4885 0.7461
3.7095 16.0182 380000 3.4826 0.7472
3.7041 16.4397 390000 3.4774 0.7481
3.6965 16.8613 400000 3.4750 0.7488
3.6936 17.2828 410000 3.4675 0.7496
3.6885 17.7043 420000 3.4642 0.7505
3.679 18.1259 430000 3.4608 0.7512
3.6735 18.5474 440000 3.4564 0.7517
3.6726 18.9689 450000 3.4499 0.7528
3.6668 19.3905 460000 3.4468 0.7534
3.663 19.8120 470000 3.4422 0.7541
3.656 20.2335 480000 3.4387 0.7546
3.6499 20.6551 490000 3.4352 0.7554
3.6462 21.0766 500000 3.4307 0.7559
3.6423 21.4981 510000 3.4273 0.7566
3.6374 21.9197 520000 3.4252 0.7569
3.6389 22.3412 530000 3.4225 0.7574
3.6316 22.7627 540000 3.4215 0.7577
3.6323 23.1843 550000 3.4175 0.7582
3.6287 23.6058 560000 3.4146 0.7589
3.623 24.0273 570000 3.4132 0.7591
3.6224 24.4488 580000 3.4097 0.7595
3.6193 24.8704 590000 3.4098 0.7595

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3