gokulsrinivasagan's picture
Model save
b8b7bc4 verified
|
raw
history blame
2.38 kB
---
library_name: transformers
base_model: gokulsrinivasagan/bert_base_lda_100_v1
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert_base_lda_100_v1_wnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_base_lda_100_v1_wnli
This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6907
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9555 | 1.0 | 3 | 1.7839 | 0.5634 |
| 1.287 | 2.0 | 6 | 1.9711 | 0.5634 |
| 1.9411 | 3.0 | 9 | 0.7586 | 0.5634 |
| 0.8928 | 4.0 | 12 | 0.9855 | 0.4366 |
| 0.8147 | 5.0 | 15 | 0.7992 | 0.5634 |
| 0.8064 | 6.0 | 18 | 0.6987 | 0.4366 |
| 0.7033 | 7.0 | 21 | 0.6914 | 0.5634 |
| 0.7235 | 8.0 | 24 | 0.6867 | 0.5634 |
| 0.701 | 9.0 | 27 | 0.7205 | 0.4366 |
| 0.6954 | 10.0 | 30 | 0.6856 | 0.5634 |
| 0.6999 | 11.0 | 33 | 0.6916 | 0.5634 |
| 0.7008 | 12.0 | 36 | 0.7042 | 0.4366 |
| 0.6948 | 13.0 | 39 | 0.6856 | 0.5634 |
| 0.6948 | 14.0 | 42 | 0.6864 | 0.5634 |
| 0.6946 | 15.0 | 45 | 0.6907 | 0.5634 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3