|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
base_model: gokulsrinivasagan/bert_base_lda_100_v1 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bert_base_lda_100_v1_mnli |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MNLI |
|
type: glue |
|
args: mnli |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7162327095199349 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_base_lda_100_v1_mnli |
|
|
|
This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on the GLUE MNLI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6799 |
|
- Accuracy: 0.7162 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.9588 | 1.0 | 1534 | 0.8420 | 0.6249 | |
|
| 0.7857 | 2.0 | 3068 | 0.7451 | 0.6808 | |
|
| 0.6825 | 3.0 | 4602 | 0.7162 | 0.6976 | |
|
| 0.5973 | 4.0 | 6136 | 0.7056 | 0.7113 | |
|
| 0.5208 | 5.0 | 7670 | 0.7460 | 0.7144 | |
|
| 0.4464 | 6.0 | 9204 | 0.7907 | 0.7078 | |
|
| 0.3775 | 7.0 | 10738 | 0.8362 | 0.7172 | |
|
| 0.316 | 8.0 | 12272 | 0.9463 | 0.7101 | |
|
| 0.2617 | 9.0 | 13806 | 1.0094 | 0.7111 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|