gokulsrinivasagan's picture
End of training
0edda5d verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - gokulsrinivasagan/processed_book_corpus-ld-100
metrics:
  - accuracy
model-index:
  - name: bert_base_lda_100_v1_book
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: gokulsrinivasagan/processed_book_corpus-ld-100
          type: gokulsrinivasagan/processed_book_corpus-ld-100
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7551218228545009

bert_base_lda_100_v1_book

This model is a fine-tuned version of on the gokulsrinivasagan/processed_book_corpus-ld-100 dataset. It achieves the following results on the evaluation set:

  • Loss: 4.4757
  • Accuracy: 0.7551

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
9.5861 0.4215 10000 9.3593 0.1636
9.2311 0.8431 20000 9.0701 0.1641
9.1362 1.2646 30000 8.9889 0.1662
6.984 1.6861 40000 6.4486 0.4683
5.8878 2.1077 50000 5.5436 0.5941
5.6092 2.5292 60000 5.2862 0.6336
5.4567 2.9507 70000 5.1556 0.6531
5.3612 3.3723 80000 5.0665 0.6665
5.2881 3.7938 90000 4.9997 0.6763
5.2269 4.2153 100000 4.9488 0.6834
5.1854 4.6369 110000 4.9087 0.6889
5.1474 5.0584 120000 4.8727 0.6944
5.1144 5.4799 130000 4.8404 0.6990
5.0914 5.9014 140000 4.8134 0.7026
5.0579 6.3230 150000 4.7935 0.7058
5.044 6.7445 160000 4.7736 0.7089
5.0124 7.1660 170000 4.7533 0.7124
4.9997 7.5876 180000 4.7431 0.7140
4.9809 8.0091 190000 4.7224 0.7163
4.9674 8.4306 200000 4.7087 0.7189
4.9526 8.8522 210000 4.6976 0.7206
4.9422 9.2737 220000 4.6848 0.7224
4.9232 9.6952 230000 4.6721 0.7242
4.9073 10.1168 240000 4.6646 0.7261
4.9072 10.5383 250000 4.6502 0.7276
4.8916 10.9598 260000 4.6415 0.7290
4.8805 11.3814 270000 4.6341 0.7301
4.8775 11.8029 280000 4.6231 0.7318
4.86 12.2244 290000 4.6168 0.7330
4.8539 12.6460 300000 4.6066 0.7346
4.8416 13.0675 310000 4.5990 0.7359
4.8371 13.4890 320000 4.5932 0.7366
4.8312 13.9106 330000 4.5877 0.7373
4.8264 14.3321 340000 4.5786 0.7392
4.8157 14.7536 350000 4.5722 0.7398
4.8097 15.1751 360000 4.5686 0.7404
4.8045 15.5967 370000 4.5596 0.7416
4.7951 16.0182 380000 4.5546 0.7427
4.7906 16.4397 390000 4.5487 0.7434
4.7858 16.8613 400000 4.5452 0.7441
4.7798 17.2828 410000 4.5381 0.7452
4.7725 17.7043 420000 4.5330 0.7461
4.7628 18.1259 430000 4.5300 0.7466
4.7584 18.5474 440000 4.5251 0.7472
4.7573 18.9689 450000 4.5193 0.7483
4.7502 19.3905 460000 4.5154 0.7488
4.7482 19.8120 470000 4.5109 0.7496
4.738 20.2335 480000 4.5065 0.7502
4.7328 20.6551 490000 4.5021 0.7509
4.7289 21.0766 500000 4.4975 0.7515
4.7235 21.4981 510000 4.4950 0.7521
4.7191 21.9197 520000 4.4923 0.7525
4.7191 22.3412 530000 4.4891 0.7530
4.714 22.7627 540000 4.4877 0.7534
4.714 23.1843 550000 4.4832 0.7539
4.7086 23.6058 560000 4.4800 0.7544
4.7055 24.0273 570000 4.4785 0.7547
4.7024 24.4488 580000 4.4747 0.7552
4.6993 24.8704 590000 4.4753 0.7550

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3