whisper-base.en-fsc

This model is a fine-tuned version of openai/whisper-base.en on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0437
  • Accuracy: 0.9950

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9959 120 0.0862 0.9739
No log 2.0 241 0.0422 0.9866
No log 2.9959 361 0.0630 0.9823
No log 4.0 482 0.0630 0.9805
No log 4.9959 602 0.0626 0.9821
No log 6.0 723 0.0339 0.9905
No log 6.9959 843 0.0452 0.9897
No log 8.0 964 0.0527 0.9834
0.1514 8.9959 1084 0.0637 0.9868
0.1514 10.0 1205 0.0443 0.9921
0.1514 10.9959 1325 0.0306 0.9937
0.1514 12.0 1446 0.0416 0.9897
0.1514 12.9959 1566 0.0363 0.9910
0.1514 14.0 1687 0.0413 0.9924
0.1514 14.9959 1807 0.0344 0.9945
0.1514 16.0 1928 0.0508 0.9924
0.0161 16.9959 2048 0.0436 0.9937
0.0161 18.0 2169 0.0435 0.9931
0.0161 18.9959 2289 0.0428 0.9945
0.0161 20.0 2410 0.0425 0.9947
0.0161 20.9959 2530 0.0432 0.9947
0.0161 22.0 2651 0.0438 0.9947
0.0161 22.9959 2771 0.0437 0.9950
0.0161 24.0 2892 0.0438 0.9950
0.0011 24.8963 3000 0.0438 0.9950

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
20.7M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for gokuls/whisper-base.en-fsc

Finetuned
(28)
this model