gokuls's picture
End of training
4c80b7b verified
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: hubert-base-ls960-speech-commands-h
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.02
          split: None
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7594424460431655

hubert-base-ls960-speech-commands-h

This model is a fine-tuned version of facebook/hubert-base-ls960 on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3148
  • Accuracy: 0.7594

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.743 1.0 824 3.4107 0.1781
2.3383 2.0 1648 3.4632 0.1862
2.2702 3.0 2472 3.5701 0.0787
2.3059 4.0 3296 3.5742 0.0971
2.2574 5.0 4120 3.5457 0.1493
2.0617 6.0 4944 2.8490 0.3453
2.0289 7.0 5768 2.7607 0.3215
1.7807 8.0 6592 2.5721 0.4681
1.8188 9.0 7416 2.5625 0.5301
1.3812 10.0 8240 2.4258 0.6942
1.3136 11.0 9064 2.2087 0.6884
1.2867 12.0 9888 1.8347 0.7221
1.1036 13.0 10712 1.6731 0.7383
0.9534 14.0 11536 1.8732 0.7307
0.9289 15.0 12360 1.5742 0.7415
1.0973 16.0 13184 1.3693 0.7365
0.989 17.0 14008 1.2718 0.7455
0.8876 18.0 14832 1.3148 0.7594
0.814 19.0 15656 1.2231 0.7558
0.9899 20.0 16480 1.2349 0.7522

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1