bert_12_layer_model_v3_48_massive

This model is a fine-tuned version of gokuls/bert_12_layer_model_v3_complete_training_48 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9214
  • Accuracy: 0.8608

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7608 1.0 180 0.9351 0.7482
0.8417 2.0 360 0.8314 0.7841
0.6057 3.0 540 0.7307 0.8160
0.4715 4.0 720 0.6995 0.8382
0.3766 5.0 900 0.7602 0.8273
0.2933 6.0 1080 0.7537 0.8357
0.2321 7.0 1260 0.7966 0.8426
0.1873 8.0 1440 0.8015 0.8396
0.1447 9.0 1620 0.8281 0.8392
0.1079 10.0 1800 0.8665 0.8446
0.0781 11.0 1980 0.8758 0.8500
0.0573 12.0 2160 0.8646 0.8515
0.0383 13.0 2340 0.9121 0.8603
0.024 14.0 2520 0.8963 0.8593
0.015 15.0 2700 0.9214 0.8608

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
48
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/bert_12_layer_model_v3_48_massive

Finetuned
(2)
this model

Evaluation results