gokuls's picture
End of training
9dc4078
metadata
base_model: gokuls/HBERTv1_48_L12_H512_A8
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L12_H512_A8_emotion
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8965

HBERTv1_48_L12_H512_A8_emotion

This model is a fine-tuned version of gokuls/HBERTv1_48_L12_H512_A8 on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3811
  • Accuracy: 0.8965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8277 1.0 250 0.4343 0.852
0.3876 2.0 500 0.3535 0.877
0.297 3.0 750 0.2943 0.887
0.229 4.0 1000 0.2967 0.891
0.1794 5.0 1250 0.2958 0.891
0.132 6.0 1500 0.3239 0.8915
0.1018 7.0 1750 0.3811 0.8965
0.0711 8.0 2000 0.4557 0.892
0.0504 9.0 2250 0.5029 0.894
0.034 10.0 2500 0.5607 0.8935

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0