earthquake

This model is a fine-tuned version of nvidia/mit-b0 on the gokceKy/earthquake dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2868
  • Mean Iou: 0.2379
  • Mean Accuracy: 0.2922
  • Overall Accuracy: 0.5492
  • Accuracy Background: nan
  • Accuracy Car: 0.0
  • Accuracy Earthquake-roads: 0.4334
  • Accuracy Other: 0.1291
  • Accuracy Road: 0.6209
  • Accuracy Road-cracks: 0.0
  • Accuracy Sky: 0.8620
  • Accuracy Wall: 0.0
  • Iou Background: 0.0
  • Iou Car: 0.0
  • Iou Earthquake-roads: 0.3329
  • Iou Other: 0.1229
  • Iou Road: 0.5861
  • Iou Road-cracks: 0.0
  • Iou Sky: 0.8615
  • Iou Wall: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Car Accuracy Earthquake-roads Accuracy Other Accuracy Road Accuracy Road-cracks Accuracy Sky Accuracy Wall Iou Background Iou Car Iou Earthquake-roads Iou Other Iou Road Iou Road-cracks Iou Sky Iou Wall
2.0651 0.1316 5 2.0768 0.0374 0.1237 0.1091 nan 0.0 0.6207 0.2450 0.0 0.0 0.0 0.0 0.0 0.0 0.1556 0.1438 0.0 0.0 0.0 0.0
1.8605 0.2632 10 2.0532 0.0563 0.1524 0.2410 nan 0.0 0.7513 0.1438 0.1716 0.0 0.0 0.0 0.0 0.0 0.2042 0.0782 0.1683 0.0 0.0 0.0
1.7033 0.3947 15 2.0117 0.0892 0.1338 0.3878 nan 0.0 0.4356 0.0185 0.4531 0.0 0.0296 0.0 0.0 0.0 0.2332 0.0152 0.4359 0.0 0.0296 0.0
1.6843 0.5263 20 1.9639 0.1220 0.2025 0.4637 nan 0.0 0.6874 0.0325 0.4990 0.0 0.1983 0.0 0.0 0.0 0.2913 0.0309 0.4793 0.0 0.1748 0.0
1.7298 0.6579 25 1.8835 0.1234 0.1819 0.5114 nan 0.0 0.6336 0.0555 0.5840 0.0 0.0 0.0 0.0 0.0 0.3818 0.0542 0.5516 0.0 0.0 0.0
1.4833 0.7895 30 1.7512 0.1555 0.2118 0.6238 nan 0.0 0.6148 0.1323 0.7352 0.0 0.0 0.0 0.0 0.0 0.4310 0.1293 0.6841 0.0 0.0 0.0
1.5078 0.9211 35 1.6947 0.2232 0.3260 0.6338 nan 0.0 0.6497 0.4078 0.6786 0.0 0.5459 0.0 0.0 0.0 0.4381 0.3286 0.6399 0.0 0.3788 0.0
1.2623 1.0526 40 1.6373 0.2083 0.3221 0.5803 nan 0.0 0.6784 0.3435 0.6017 0.0 0.6309 0.0 0.0 0.0 0.4245 0.2883 0.5717 0.0 0.3819 0.0
1.124 1.1842 45 1.4797 0.2175 0.3017 0.6133 nan 0.0 0.6023 0.2190 0.6795 0.0 0.6111 0.0 0.0 0.0 0.4482 0.2035 0.6431 0.0 0.4454 0.0
1.1958 1.3158 50 1.3304 0.2445 0.3053 0.6530 nan 0.0 0.5340 0.2660 0.7434 0.0 0.5935 0.0 0.0 0.0 0.4644 0.2522 0.6977 0.0 0.5413 0.0
1.6012 1.4474 55 1.2994 0.2460 0.3082 0.6439 nan 0.0 0.5639 0.3192 0.7202 0.0 0.5538 0.0 0.0 0.0 0.4683 0.3049 0.6765 0.0 0.5182 0.0
0.8773 1.5789 60 1.3010 0.2476 0.3222 0.6103 nan 0.0 0.6028 0.3035 0.6603 0.0 0.6891 0.0 0.0 0.0 0.4475 0.2968 0.6193 0.0 0.6169 0.0
1.2279 1.7105 65 1.4635 0.1929 0.3179 0.4692 nan 0.0 0.6939 0.2394 0.4448 0.0 0.8469 0.0 0.0 0.0 0.3517 0.2280 0.4246 0.0 0.5389 0.0
1.2859 1.8421 70 1.4540 0.2030 0.2891 0.4708 nan 0.0 0.5973 0.1369 0.4808 0.0 0.8089 0.0 0.0 0.0 0.4248 0.1346 0.4546 0.0 0.6098 0.0
1.6452 1.9737 75 1.4244 0.2336 0.3038 0.5933 nan 0.0 0.5942 0.1817 0.6531 0.0 0.6979 0.0 0.0 0.0 0.4350 0.1742 0.6117 0.0 0.6476 0.0
0.9851 2.1053 80 1.2722 0.2418 0.3033 0.6973 nan 0.0 0.4978 0.0674 0.8303 0.0 0.7273 0.0 0.0 0.0 0.4238 0.0668 0.7747 0.0 0.6693 0.0
0.9787 2.2368 85 1.2686 0.2403 0.2910 0.6700 nan 0.0 0.4831 0.0065 0.8018 0.0 0.7458 0.0 0.0 0.0 0.4308 0.0064 0.7577 0.0 0.7276 0.0
0.8809 2.3684 90 1.2555 0.2511 0.3109 0.6567 nan 0.0 0.6051 0.0292 0.7541 0.0 0.7878 0.0 0.0 0.0 0.5059 0.0288 0.7246 0.0 0.7497 0.0
1.0033 2.5 95 1.2597 0.2597 0.3421 0.6828 nan 0.0 0.7784 0.0607 0.7517 0.0 0.8040 0.0 0.0 0.0 0.5432 0.0594 0.7306 0.0 0.7441 0.0
0.9275 2.6316 100 1.2301 0.2695 0.3516 0.7156 nan 0.0 0.7590 0.1137 0.7954 0.0 0.7928 0.0 0.0 0.0 0.5258 0.1102 0.7662 0.0 0.7541 0.0
0.8305 2.7632 105 1.1418 0.2914 0.3563 0.7436 nan 0.0 0.5627 0.2494 0.8540 0.0 0.8279 0.0 0.0 0.0 0.4717 0.2316 0.8070 0.0 0.8207 0.0
1.4194 2.8947 110 1.2171 0.2577 0.3141 0.6741 nan 0.0 0.3442 0.2353 0.8020 0.0 0.8172 0.0 0.0 0.0 0.3208 0.2179 0.7558 0.0 0.7671 0.0
0.9159 3.0263 115 1.5539 0.1992 0.2485 0.3971 nan 0.0 0.3474 0.1528 0.4246 0.0 0.8146 0.0 0.0 0.0 0.2509 0.1430 0.4104 0.0 0.7895 0.0
0.8513 3.1579 120 1.6732 0.1939 0.2713 0.3645 nan 0.0 0.6345 0.1103 0.3273 0.0 0.8272 0.0 0.0 0.0 0.3363 0.1081 0.3223 0.0 0.7842 0.0
0.655 3.2895 125 1.3317 0.2348 0.3000 0.5930 nan 0.0 0.4572 0.1112 0.6802 0.0 0.8512 0.0 0.0 0.0 0.3833 0.1091 0.6360 0.0 0.7501 0.0
1.1348 3.4211 130 1.2073 0.2544 0.3232 0.6840 nan 0.0 0.5067 0.0727 0.8010 0.0 0.8817 0.0 0.0 0.0 0.4064 0.0715 0.7402 0.0 0.8169 0.0
1.0625 3.5526 135 1.2138 0.2499 0.3055 0.6480 nan 0.0 0.4694 0.0793 0.7599 0.0 0.8299 0.0 0.0 0.0 0.3803 0.0778 0.7140 0.0 0.8275 0.0
0.9589 3.6842 140 1.3193 0.2404 0.3097 0.6012 nan 0.0 0.6269 0.0484 0.6678 0.0 0.8249 0.0 0.0 0.0 0.4164 0.0478 0.6404 0.0 0.8189 0.0
1.246 3.8158 145 1.3526 0.2097 0.2537 0.5136 nan 0.0 0.3748 0.0373 0.5993 0.0 0.7645 0.0 0.0 0.0 0.3062 0.0366 0.5704 0.0 0.7645 0.0
0.7836 3.9474 150 1.3824 0.1970 0.2338 0.4868 nan 0.0 0.2695 0.0250 0.5844 0.0 0.7579 0.0 0.0 0.0 0.2407 0.0248 0.5525 0.0 0.7579 0.0
0.8474 4.0789 155 1.4235 0.1998 0.2368 0.4725 nan 0.0 0.2587 0.0655 0.5606 0.0 0.7724 0.0 0.0 0.0 0.2365 0.0629 0.5275 0.0 0.7712 0.0
1.0723 4.2105 160 1.4177 0.2109 0.2510 0.4877 nan 0.0 0.2976 0.1024 0.5688 0.0 0.7884 0.0 0.0 0.0 0.2681 0.0978 0.5343 0.0 0.7868 0.0
1.1283 4.3421 165 1.4844 0.2020 0.2396 0.4298 nan 0.0 0.2979 0.1040 0.4875 0.0 0.7877 0.0 0.0 0.0 0.2671 0.1007 0.4621 0.0 0.7860 0.0
0.6614 4.4737 170 1.4177 0.2111 0.2522 0.4542 nan 0.0 0.3361 0.1011 0.5131 0.0 0.8151 0.0 0.0 0.0 0.2906 0.0980 0.4868 0.0 0.8136 0.0
1.0973 4.6053 175 1.5041 0.2078 0.2573 0.4288 nan 0.0 0.4572 0.0763 0.4572 0.0 0.8107 0.0 0.0 0.0 0.3406 0.0750 0.4386 0.0 0.8081 0.0
0.8756 4.7368 180 1.3542 0.2236 0.2753 0.4929 nan 0.0 0.4403 0.1089 0.5448 0.0 0.8332 0.0 0.0 0.0 0.3338 0.1051 0.5177 0.0 0.8324 0.0
0.6712 4.8684 185 1.3772 0.2232 0.2761 0.4811 nan 0.0 0.4525 0.1373 0.5231 0.0 0.8195 0.0 0.0 0.0 0.3373 0.1303 0.4993 0.0 0.8185 0.0
1.2096 5.0 190 1.2868 0.2379 0.2922 0.5492 nan 0.0 0.4334 0.1291 0.6209 0.0 0.8620 0.0 0.0 0.0 0.3329 0.1229 0.5861 0.0 0.8615 0.0

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.4.1+cpu
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
6
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokceKy/earthquake

Base model

nvidia/mit-b0
Finetuned
(344)
this model