SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("gmunkhtur/finetuned_paraphrase-multilingual_v2")
# Run inference
sentences = [
    'Номын нэр ямар утгатай вэ?',
    'news: Монгол Улсын Соёлын гавьяат зүтгэлтэн яруу найрагч Санжаажавын Оюун “Ижилгүй цоохор морь” хэмээх үргэлжилсэн үгийн шинэ номоо өлгийдөн авчээ. Түүний энэ удаагийн номыг яруу найрагч Д.Баянтунгалаг ариутган шүүсэн бөгөөд “Мөнхийн үсэг” компанид хэвлүүлсэн байна. Энэхүү номдоо тэрээр “Костюмт багш”, “Бурханы унаа”, “Би цоохор морь” зэрэг 11 бүтээлээ уншигч олондоо дэлгэн барьжээ. Булган аймгийн Могод сумын харьяат яруу найрагч С.Оюуныг уншигч олон “Хорвоод ганцхан ээждээ”, “Үнсье чамайгаа” зэрэг олон сайхан дуу, “Тань руу нүүж явна” кино зохиол зэргээр нь сайн таних юм. Т.ДАРХАН',
    'news: Бүх цаг үеэс сонгосон дэлхийн яруу найргийн дээж “Гурван зуун шүлэгт” антологи хэвлэгдэн уншигчдын гарт очлоо. Энэ антологийг эмхэтгэж сонголт хийсэн Соёлын гавьяат зүтгэлэн, яруу найраг Г.Мэнд-Ооёотой ярилцлаа. -Та саяхан “Бүх цаг үеэс сонгосон дэлхийн яруу найргийн дээж ГУРВАН ЗУУН ШҮЛЭГТ” нэртэй антологи гаргасан байна? Ийм антологи хийхэд мэдээж нилээд их цаг хугацаа, хүч хөдөлмөр орох байх? -Тиймээ. Би шүлэг зохиолд хорхойсч байх үеэсээ л өөрт сайхан санагдсан шүлгүүдийг тусгай дэвтэрт бичиж, түүнээ үе үе уншиж урам зориг авдаг байсан. Аандаа уг дэвтэр маань олон зуун шүлэгтэй болсон. Тэр ногоон дэвтэр энэ антологийн эхлэл юм. 2005 оноос эхлээд би “Дэлхийн шилдэг яруу найраг” нэртэй цуврал антологиуд хэвлүүлж эхэлсэн. “Оросын яруу найраг”, “Японы яруу найраг”, “Энэтхэгийн яруу найраг”, “Хятадын яруу найраг”, “Америкийн яруу найраг” гээд 10 ботийг гаргаад байгаа л даа. Цуврал маань цааш үргэлжилнэ. Ингээд би өөртөө яруу найргийн нилээд баялаг сан хөмрөгтэй болж, үүнийхээ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.2516
cosine_accuracy@3 0.4182
cosine_accuracy@5 0.4961
cosine_accuracy@10 0.5992
cosine_precision@1 0.2516
cosine_precision@3 0.1394
cosine_precision@5 0.0992
cosine_precision@10 0.0599
cosine_recall@1 0.2516
cosine_recall@3 0.4182
cosine_recall@5 0.4961
cosine_recall@10 0.5992
cosine_ndcg@10 0.4146
cosine_mrr@10 0.3569
cosine_map@100 0.3688

Training Details

Training Dataset

Unnamed Dataset

  • Size: 26,619 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 8 tokens
    • mean: 17.93 tokens
    • max: 43 tokens
    • min: 41 tokens
    • mean: 124.86 tokens
    • max: 128 tokens
  • Samples:
    sentence_0 sentence_1
    "Юрийн галавын үе" киноны амжилтыг юугаар тайлбарлах вэ? news: Киноны кадраас «Юрийн галавын үе» кино прокатад тавигдсныхаа дараах эхний амралтын өдрөөр хамгийн их орлого оллоо гэж Business Insider хэвлэл мэдээлэв. Хойд Америкт л гэхэд эхний амралтын өдрүүдэд 204,6 сая доллар цуглуулж чадлаа. Гадаад орнуудын үзүүлэлт нь 307,2 сая ам.доллар байв. Нийт кассын орлого 511,8 сая ам.доллар болжээ. Энэхүү үзүүлэлт нь Universal кино компанийн дээд амжилт төдийгүй дэлхийн кино аж үйлдвэрийн томоохон үсрэлт боллоо. Үүнээс өмнө амралтын эхний өдрүүдэд 500 сая долларын босго давсан их мөнгө цуглуулж байсан түүх байхгүй. «Гарри Поттер ба үхлийн тахил: II хэсэг» 483 сая долларын орлого олсноороо хоёрдугаарт явж байна. Universal компанийн дөрөвдүгээр сард гаргасан «Галзуу хурд 7» кино харин эхний амралтын өдрүүдэд 147 сая доллар цуглуулсан юм. Эхний амралтын өдрүүдийн орлого нь кино бизнесийн чухал үзүүлэлт бөгөөд тэр үзүүлэлтээр киноны прокатын хувь заяа шалтгаалдаг. Бэлтгэсэн Ш.МЯГМАР
    Энэ киноны амжилт дэлхийн кино үйлдвэрт ямар нөлөө үзүүлэх вэ? news: Киноны кадраас «Юрийн галавын үе» кино прокатад тавигдсныхаа дараах эхний амралтын өдрөөр хамгийн их орлого оллоо гэж Business Insider хэвлэл мэдээлэв. Хойд Америкт л гэхэд эхний амралтын өдрүүдэд 204,6 сая доллар цуглуулж чадлаа. Гадаад орнуудын үзүүлэлт нь 307,2 сая ам.доллар байв. Нийт кассын орлого 511,8 сая ам.доллар болжээ. Энэхүү үзүүлэлт нь Universal кино компанийн дээд амжилт төдийгүй дэлхийн кино аж үйлдвэрийн томоохон үсрэлт боллоо. Үүнээс өмнө амралтын эхний өдрүүдэд 500 сая долларын босго давсан их мөнгө цуглуулж байсан түүх байхгүй. «Гарри Поттер ба үхлийн тахил: II хэсэг» 483 сая долларын орлого олсноороо хоёрдугаарт явж байна. Universal компанийн дөрөвдүгээр сард гаргасан «Галзуу хурд 7» кино харин эхний амралтын өдрүүдэд 147 сая доллар цуглуулсан юм. Эхний амралтын өдрүүдийн орлого нь кино бизнесийн чухал үзүүлэлт бөгөөд тэр үзүүлэлтээр киноны прокатын хувь заяа шалтгаалдаг. Бэлтгэсэн Ш.МЯГМАР
    Киноны эхний амралтын өдрүүдийн орлого яагаад ийм чухал вэ? news: Киноны кадраас «Юрийн галавын үе» кино прокатад тавигдсныхаа дараах эхний амралтын өдрөөр хамгийн их орлого оллоо гэж Business Insider хэвлэл мэдээлэв. Хойд Америкт л гэхэд эхний амралтын өдрүүдэд 204,6 сая доллар цуглуулж чадлаа. Гадаад орнуудын үзүүлэлт нь 307,2 сая ам.доллар байв. Нийт кассын орлого 511,8 сая ам.доллар болжээ. Энэхүү үзүүлэлт нь Universal кино компанийн дээд амжилт төдийгүй дэлхийн кино аж үйлдвэрийн томоохон үсрэлт боллоо. Үүнээс өмнө амралтын эхний өдрүүдэд 500 сая долларын босго давсан их мөнгө цуглуулж байсан түүх байхгүй. «Гарри Поттер ба үхлийн тахил: II хэсэг» 483 сая долларын орлого олсноороо хоёрдугаарт явж байна. Universal компанийн дөрөвдүгээр сард гаргасан «Галзуу хурд 7» кино харин эхний амралтын өдрүүдэд 147 сая доллар цуглуулсан юм. Эхний амралтын өдрүүдийн орлого нь кино бизнесийн чухал үзүүлэлт бөгөөд тэр үзүүлэлтээр киноны прокатын хувь заяа шалтгаалдаг. Бэлтгэсэн Ш.МЯГМАР
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256,
            128,
            64,
            32
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 20
  • per_device_eval_batch_size: 20
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss cosine_ndcg@10
0.0376 50 - 0.2937
0.0751 100 - 0.3049
0.1127 150 - 0.3175
0.1503 200 - 0.3277
0.1878 250 - 0.3382
0.2254 300 - 0.3472
0.2630 350 - 0.3585
0.3005 400 - 0.3635
0.3381 450 - 0.3666
0.3757 500 9.7164 0.3697
0.4132 550 - 0.3739
0.4508 600 - 0.3788
0.4884 650 - 0.3799
0.5259 700 - 0.3825
0.5635 750 - 0.3828
0.6011 800 - 0.3852
0.6386 850 - 0.3889
0.6762 900 - 0.3873
0.7137 950 - 0.3863
0.7513 1000 6.4327 0.3925
0.7889 1050 - 0.3913
0.8264 1100 - 0.3910
0.8640 1150 - 0.3941
0.9016 1200 - 0.3936
0.9391 1250 - 0.3907
0.9767 1300 - 0.3969
1.0 1331 - 0.3952
1.0143 1350 - 0.3973
1.0518 1400 - 0.3955
1.0894 1450 - 0.4016
1.1270 1500 5.0976 0.3987
1.1645 1550 - 0.3993
1.2021 1600 - 0.4001
1.2397 1650 - 0.4028
1.2772 1700 - 0.3989
1.3148 1750 - 0.3980
1.3524 1800 - 0.4015
1.3899 1850 - 0.3999
1.4275 1900 - 0.3983
1.4651 1950 - 0.3978
1.5026 2000 4.429 0.4002
1.5402 2050 - 0.3992
1.5778 2100 - 0.4045
1.6153 2150 - 0.4075
1.6529 2200 - 0.4062
1.6905 2250 - 0.4055
1.7280 2300 - 0.4045
1.7656 2350 - 0.4107
1.8032 2400 - 0.4114
1.8407 2450 - 0.4058
1.8783 2500 4.0496 0.4097
1.9159 2550 - 0.4049
1.9534 2600 - 0.4065
1.9910 2650 - 0.4114
2.0 2662 - 0.4093
2.0285 2700 - 0.4091
2.0661 2750 - 0.4094
2.1037 2800 - 0.4085
2.1412 2850 - 0.4140
2.1788 2900 - 0.4117
2.2164 2950 - 0.4131
2.2539 3000 3.3969 0.4129
2.2915 3050 - 0.4146

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
6
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gmunkhtur/finetuned_paraphrase-multilingual_v2

Evaluation results