gjuggler's picture
update model card README.md
de94d52
|
raw
history blame
2.38 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - bird-data
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-birds
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: bird-data
          type: bird-data
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8214882943143813

swin-tiny-patch4-window7-224-finetuned-birds

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the bird-data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6642
  • Accuracy: 0.8215

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 72
  • eval_batch_size: 72
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 288
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.8854 0.99 74 3.0164 0.3039
2.066 1.99 148 1.4849 0.6095
1.5066 2.99 222 1.0624 0.7145
1.1904 3.99 296 0.9347 0.7450
0.9986 4.99 370 0.8415 0.7709
0.9437 5.99 444 0.7713 0.7901
0.8297 6.99 518 0.7216 0.8081
0.7805 7.99 592 0.6856 0.8152
0.6978 8.99 666 0.6642 0.8215
0.6147 9.99 740 0.6525 0.8207

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2