phi-2-finetuned-mental-health-conversational

This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: QuantizationMethod.BITS_AND_BYTES
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 100

Training results

Framework versions

  • PEFT 0.4.0
  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for givyboy/phi-2-finetuned-mental-health-conversational

Base model

microsoft/phi-2
Adapter
(714)
this model

Spaces using givyboy/phi-2-finetuned-mental-health-conversational 4