giraffe176/Open_Maid_Samantha_Hermes_Orca
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the SLERP merge method.
Models Merged
The following models were included in the merge:
- cognitivecomputations/samantha-1.1-westlake-7b
- NeverSleep/Noromaid-7B-0.4-DPO
- OpenHermes-2.5-Mistral-7B
- Open-Orca/Mistral-7B-OpenOrca
Configuration
The following YAML configuration was used to produce this model:
models:
- model: cognitivecomputations/samantha-1.1-westlake-7b
layer_range: [0, 32]
- model: NeverSleep/Noromaid-7B-0.4-DPO
layer_range: [0, 32]
merge_method: slerp
base_model: NeverSleep/Noromaid-7B-0.4-DPO
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
name: workspace1
---
models:
- model: teknium/OpenHermes-2.5-Mistral-7B
layer_range: [0, 32]
- model: Open-Orca/Mistral-7B-OpenOrca
layer_range: [0, 32]
merge_method: slerp
base_model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
name: workspace2
---
models:
- model: workspace1
layer_range: [0, 32]
- model: workspace2
layer_range: [0, 32]
merge_method: slerp
base_model: workspace1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.81 |
AI2 Reasoning Challenge (25-Shot) | 66.81 |
HellaSwag (10-Shot) | 85.83 |
MMLU (5-Shot) | 64.58 |
TruthfulQA (0-shot) | 53.91 |
Winogrande (5-shot) | 80.35 |
GSM8k (5-shot) | 61.41 |
- Downloads last month
- 80
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for giraffe176/Open_Maid_Samantha_Hermes_Orca
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard66.810
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.830
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.580
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard53.910
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard80.350
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard61.410