SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Finetuning
The model was finetuned on Coronavirus tweets NLP - Text Classification. The objective was agrupate tweets by sentiment, for this, the dataset was divided into pairs of tweets and the similarity between them defined by the sentiment label. The following labels were used:
- Extremely Positive and Extremely Negative: 0.0
- Extremely Positive and Neutral: 0.2
- Extremely Positive and Positive: 0.7
- Extremely Positive and Negative: 0.2
- Extremely Negative and Neutral: 0.2
- Extremely Negative and Positive: 0.2
- Extremely Negative and Negative: 0.7
- Neutral and Positive: 0.5
- Neutral and Negative: 0.5
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("gianvr/sbert-tunned-covid")
# Run inference
sentences = [
'Governor Cuomo Please order retail businesses to close My husband has to go to work and expose himself to the virus Store owners will not close unless you tell them they have to I have two friends fighting for their lives PLEASE CLOSE STORES NOW',
'Clothier @LandsEnd has closed all of its retail stores through March 29th due to coronavirus pandemic. They will pay all of their employees during the time period.\r\r\n\r\r\nThis is their store at the Hunt Valley Towne Center. #HuntValley #coronavirus https://t.co/DIwNzAOLeb',
'Went to the store today. Most canned food is gone. We needed toilet paper and actually got a pack of 12 rolls. We got milk and cat treats as well. Thank god for Save on Foods for still having some stuff. \r\r\nOver 100 cases of Covid-19 in my province so panic buying is common.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Coronavirus tweets NLP - Text Classification
Size: 59,616 training samples
Columns:
sentence1
,sentence2
, andlabel
Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 11 tokens
- mean: 60.62 tokens
- max: 245 tokens
- min: 6 tokens
- mean: 58.31 tokens
- max: 245 tokens
- min: 0.0
- mean: 0.36
- max: 0.7
Samples:
sentence1 sentence2 label BBC Business correspondent just now: "We're going to see a sustained demand for food" Pretty sure that's not news?#CoronaCrisis #covid19uk
A warning from Nick Talley, University of Newcastle professor and neuro-gastroenterologist, for those who need to hear it: https://t.co/UzRRswUSTS
0.7
The announcement(over the PA)at #Woolworths #Marrickville Metro supermarket telling shoppers to maintain #distancing is absurd. In a supermarket aisle there just isn't enough room! #Auspol #NSWpol #coronavirus #Covid_19australia #COVID19Aus
Due to the closure of indoor shopping malls to prevent the spread of our Brooklyn Atlantic Office will be closed until further notice We apologize for the inconvenience Please visit our website to find more than 60 online transactions
0.5
Expert s top tips for supermarket shopping 1 Avoid cash 2 Use a key to type in credit card pin 3 Don t take a receipt 4 Use hand sanitizer once back at your car 5 Consider quarantining food Read more
Covid-19 is likely to disrupt these data in the coming months. So far, there is only limited evidence of surging demand in supermarkets stoking prices (mostly non-food and bread). Meanwhile, fruit, veg, and sugary item prices have all crashed. 2/3
0.2
Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0671 | 500 | 0.1053 |
0.1342 | 1000 | 0.0802 |
0.2013 | 1500 | 0.0741 |
0.2684 | 2000 | 0.0701 |
0.3355 | 2500 | 0.0682 |
0.4026 | 3000 | 0.0665 |
0.4697 | 3500 | 0.0674 |
0.5368 | 4000 | 0.0667 |
0.6039 | 4500 | 0.0624 |
0.6710 | 5000 | 0.0613 |
0.7381 | 5500 | 0.0589 |
0.8052 | 6000 | 0.0647 |
0.8722 | 6500 | 0.0645 |
0.9393 | 7000 | 0.0626 |
1.0064 | 7500 | 0.0616 |
1.0735 | 8000 | 0.0591 |
1.1406 | 8500 | 0.0601 |
1.2077 | 9000 | 0.0592 |
1.2748 | 9500 | 0.0562 |
1.3419 | 10000 | 0.0586 |
1.4090 | 10500 | 0.0593 |
1.4761 | 11000 | 0.0578 |
1.5432 | 11500 | 0.0574 |
1.6103 | 12000 | 0.0561 |
1.6774 | 12500 | 0.0579 |
1.7445 | 13000 | 0.0556 |
1.8116 | 13500 | 0.0551 |
1.8787 | 14000 | 0.0554 |
1.9458 | 14500 | 0.0537 |
2.0129 | 15000 | 0.0548 |
2.0800 | 15500 | 0.0521 |
2.1471 | 16000 | 0.0534 |
2.2142 | 16500 | 0.0529 |
2.2813 | 17000 | 0.0529 |
2.3484 | 17500 | 0.052 |
2.4155 | 18000 | 0.0527 |
2.4826 | 18500 | 0.0517 |
2.5497 | 19000 | 0.0517 |
2.6167 | 19500 | 0.0497 |
2.6838 | 20000 | 0.0501 |
2.7509 | 20500 | 0.0516 |
2.8180 | 21000 | 0.0515 |
2.8851 | 21500 | 0.0511 |
2.9522 | 22000 | 0.0489 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 8
Model tree for gianvr/sbert-tunned-covid
Base model
sentence-transformers/all-MiniLM-L6-v2