gcperk20's picture
Model save
e21cea1
|
raw
history blame
3.02 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-tiny-patch16-224-finetuned-piid
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: val
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7899543378995434

deit-tiny-patch16-224-finetuned-piid

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5695
  • Accuracy: 0.7900

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2584 0.98 20 1.1962 0.4064
0.7575 2.0 41 0.8537 0.6347
0.6732 2.98 61 0.7349 0.6758
0.5892 4.0 82 0.6902 0.7032
0.5785 4.98 102 0.6303 0.7352
0.4276 6.0 123 0.5948 0.7397
0.3684 6.98 143 0.6197 0.7260
0.3669 8.0 164 0.5451 0.7580
0.3391 8.98 184 0.6707 0.7352
0.3359 10.0 205 0.5079 0.8082
0.3417 10.98 225 0.5678 0.7580
0.2714 12.0 246 0.5774 0.7443
0.3166 12.98 266 0.5747 0.7534
0.2319 14.0 287 0.5598 0.7945
0.227 14.98 307 0.5853 0.7397
0.1801 16.0 328 0.6237 0.7580
0.158 16.98 348 0.5609 0.7854
0.199 18.0 369 0.6128 0.7443
0.1407 18.98 389 0.5727 0.7900
0.1787 19.51 400 0.5695 0.7900

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1