MetaModel_moe

This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:

🧩 Configuration

base_model: gagan3012/MetaModel
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: gagan3012/MetaModel
- source_model: jeonsworld/CarbonVillain-en-10.7B-v2
- source_model: jeonsworld/CarbonVillain-en-10.7B-v4
- source_model: TomGrc/FusionNet_linear

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gagan3012/MetaModel_moe"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 74.42
ARC (25-shot) 71.25
HellaSwag (10-shot) 88.4
MMLU (5-shot) 66.26
TruthfulQA (0-shot) 71.86
Winogrande (5-shot) 83.35
GSM8K (5-shot) 65.43
Downloads last month
869
Safetensors
Model size
36.1B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gagan3012/MetaModel_moe

Quantizations
1 model

Spaces using gagan3012/MetaModel_moe 13

Collection including gagan3012/MetaModel_moe