|
---
|
|
license: apache-2.0
|
|
tags:
|
|
- image-classification
|
|
- pytorch
|
|
datasets:
|
|
- imagenette
|
|
---
|
|
|
|
|
|
# ResNet-34 model
|
|
|
|
Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ResNet architecture was introduced in [this paper](https://arxiv.org/pdf/1512.03385.pdf).
|
|
|
|
|
|
## Model description
|
|
|
|
The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection.
|
|
|
|
|
|
## Installation
|
|
|
|
### Prerequisites
|
|
|
|
Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron.
|
|
|
|
### Latest stable release
|
|
|
|
You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows:
|
|
|
|
```shell
|
|
pip install pylocron
|
|
```
|
|
|
|
or using [conda](https://anaconda.org/frgfm/pylocron):
|
|
|
|
```shell
|
|
conda install -c frgfm pylocron
|
|
```
|
|
|
|
### Developer mode
|
|
|
|
Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*:
|
|
|
|
```shell
|
|
git clone https://github.com/frgfm/Holocron.git
|
|
pip install -e Holocron/.
|
|
```
|
|
|
|
|
|
## Usage instructions
|
|
|
|
```python
|
|
from PIL import Image
|
|
from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize
|
|
from torchvision.transforms.functional import InterpolationMode
|
|
from holocron.models import model_from_hf_hub
|
|
|
|
model = model_from_hf_hub("frgfm/resnet34").eval()
|
|
|
|
img = Image.open(path_to_an_image).convert("RGB")
|
|
|
|
# Preprocessing
|
|
config = model.default_cfg
|
|
transform = Compose([
|
|
Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR),
|
|
PILToTensor(),
|
|
ConvertImageDtype(torch.float32),
|
|
Normalize(config['mean'], config['std'])
|
|
])
|
|
|
|
input_tensor = transform(img).unsqueeze(0)
|
|
|
|
# Inference
|
|
with torch.inference_mode():
|
|
output = model(input_tensor)
|
|
probs = output.squeeze(0).softmax(dim=0)
|
|
```
|
|
|
|
|
|
## Citation
|
|
|
|
Original paper
|
|
|
|
```bibtex
|
|
@article{DBLP:journals/corr/HeZRS15,
|
|
author = {Kaiming He and
|
|
Xiangyu Zhang and
|
|
Shaoqing Ren and
|
|
Jian Sun},
|
|
title = {Deep Residual Learning for Image Recognition},
|
|
journal = {CoRR},
|
|
volume = {abs/1512.03385},
|
|
year = {2015},
|
|
url = {http://arxiv.org/abs/1512.03385},
|
|
eprinttype = {arXiv},
|
|
eprint = {1512.03385},
|
|
timestamp = {Wed, 17 Apr 2019 17:23:45 +0200},
|
|
biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib},
|
|
bibsource = {dblp computer science bibliography, https://dblp.org}
|
|
}
|
|
```
|
|
|
|
Source of this implementation
|
|
|
|
```bibtex
|
|
@software{Fernandez_Holocron_2020,
|
|
author = {Fernandez, François-Guillaume},
|
|
month = {5},
|
|
title = {{Holocron}},
|
|
url = {https://github.com/frgfm/Holocron},
|
|
year = {2020}
|
|
}
|
|
```
|
|
|