metadata
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- mlabonne/NeuralBeagle14-7B
- mlabonne/NeuralDaredevil-7B
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
DareBeagle-7B
DareBeagle-7B is a merge of the following models using LazyMergekit:
As an experiment to find the best base merge to further fine-tuning, expect a lot of experiments named using parts of the component models until a clear winner emerges in the benchmarks
In this case merging the DPO versions of 2 merge models with different characterisics to meassure what capabilities remain or improve
🧩 Configuration
slices:
- sources:
- model: mlabonne/NeuralBeagle14-7B
layer_range: [0, 32]
- model: mlabonne/NeuralDaredevil-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/NeuralBeagle14-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
tokenizer_source: union
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "flemmingmiguel/DareBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])