ast-finetuned-gtzan / README.md
fisheggg's picture
End of training
0745190
metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: ast-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9

ast-finetuned-gtzan

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3724
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8858 1.0 112 0.5691 0.8
0.5797 2.0 225 0.6960 0.74
0.7178 3.0 337 0.4546 0.85
0.0858 4.0 450 0.4605 0.86
0.0048 5.0 562 0.6531 0.86
0.0218 6.0 675 0.3650 0.91
0.0831 7.0 787 0.4631 0.88
0.0002 8.0 900 0.4604 0.87
0.1109 9.0 1012 0.4126 0.91
0.0003 10.0 1125 0.3681 0.92
0.0001 11.0 1237 0.3977 0.9
0.0001 12.0 1350 0.3466 0.91
0.0001 13.0 1462 0.3682 0.91
0.0001 14.0 1575 0.3695 0.9
0.0 15.0 1687 0.3664 0.91
0.0001 16.0 1800 0.3714 0.9
0.0 17.0 1912 0.3718 0.9
0.0001 18.0 2025 0.3730 0.9
0.0001 19.0 2137 0.3717 0.9
0.0 19.91 2240 0.3724 0.9

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3