metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@5
- cosine_precision@10
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_mrr@5
- cosine_mrr@10
- cosine_map@5
- cosine_map@10
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CoSENTLoss
- dataset_size:102962
- loss:WeightedDenoisingAutoEncoderLoss
- loss:WeightedMultipleNegativesRankingLoss
widget:
- source_sentence: >-
, antenna, or other sensor to attain mission performance levels that
currently cannot be achieved by a monolithic satellite. Most aspects of
this concept have been widely studied, but
the first implementation has yet to be realized, with the exception of a
few initial experiments.
A distributed satellite system taxonomy is shown in Fig. 1 with a
discussion of current and planned systems to
follow. At the end of this section, a candidate distributed space mission
is presented as a common reference for
Table 1 presents a selection of current distributed satellite systems,
grouped in the four typical mission
categories
sentences:
- >+
What are the peaks that appear on waterfall plots but not on zero speed
curves?
- >+
What is the main challenge in implementing a distributed satellite
system?
- >+
What are the remaining challenges that need to be addressed for the
successful implementation of optical links?
- source_sentence: >-
:250,000 scale for regional context) . Near-term efforts should focus on
high-priority locations .
[16] Terrain hazard (e .g ., slope, surface roughness), line-of-sight (i
.e ., viewshed), and time-dependent
illumination maps at appropriate scales (e .g ., best-available supported
by the data) are high-priority derived products essential in mission
planning, and they should be made available as soon as possible .
[17] South polar data products could be initially controlled to coarser
data and known surface reference points to support early Artemis missions
and other surface activities, but establishment of a local control network
applied to all necessary data layers would facilitate interoperability and
provide more precision for specific sites .
Higher-order data products are tied to controlled foundational data and
are derived from source data, such as measurements of elemental abundance,
temperature or reflectance at multiple wavelengths, observations of solar
illumination, and output from space weather models . Higher-order data
products derived from these source data will play an essential role in
planning and executing south polar missions . Planning the science
activities to be carried out on the lunar surface will be based on these
higher-order data products, and, in turn, the science returned by those
activities will be used to update those same products . For example,
geologic maps based on remotely sensed data prior to early Artemis
landings will be a likely outcome of site assessments and will form the
critical basis for traverse plans and planning of science tasks . The
observations, samples, and measurements made during Artemis surface
activities will feed back into updating the geologic maps, to the benefit
of future crewed or robotic missions to the same area . Similarly,
resource maps will drive the selection of landing sites for missions
focused on resource discovery, characterization, and utilization, and the
findings of those missions will be used to iteratively update the resource
maps . In these cases, and others
sentences:
- >+
Who are the authors of the NASA document "Space Radiation Cancer Risk
Projections for Explorative Missions: Uncertainty Reduction and
Mitigation"?
- >+
What is the aggregate data rate of the outputs of the 7-band CCD-in-CMOS
TDI sensor?
- >+
What are the essential derived products in mission planning, and why are
they crucial for south polar missions?
- source_sentence: As LisR as a demonstrator mission under development
sentences:
- ' As LisR only serves as a technology demonstrator, the follow-up mission HiVE is already under development'
- ' Schematic of the 3 grid extraction system in an ion gridded thruster showing one ion beamlet and the corresponding axial potential profile (not to scale)'
- |2-
The diagram of PUC is shown as follows:
The propellent type is Sulfur Dioxide (SO2)
- source_sentence: >-
Conclusion This provides formation processes application the impact on,
small moon of the Didymos binary
sentences:
- >2-
The mission network model,
parameters, commodity demand and supply used in this case study are
presented in Fig
- >2-
Conclusion
This paper provides an overview of ejecta formation and evolution
processes with specific application to the hypervelo- city impact of the
DART spacecraft on Dimorphos, the small moon of the Didymos binary
asteroid system
- >-
vantage points from NASA and non-NASA sources, including in orbit,
airborne and even in-situ sensors to create a more dynamic and complete
picture of a natural physical process
- source_sentence: Table of
sentences:
- |-
[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
- ' Nevertheless, both formulations used in this work allow enough flexibility to adapt them to the most common mission requirements, while still being able to reduce the searching space for the optimization process'
- ' Table 4 offers a description of the selected FoM'
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@5
value: 0.8196517412935324
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8606965174129353
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.16393034825870648
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08606965174129352
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.8196517412935324
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8606965174129353
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.7116804364524553
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7249564355877233
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.6753316749585401
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.6808181315643997
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.6753316749585406
name: Cosine Map@5
- type: cosine_map@10
value: 0.6808181315644002
name: Cosine Map@10
- type: cosine_accuracy@5
value: 0.8685897435897436
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9134615384615384
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.1737179487179487
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09134615384615384
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.8685897435897436
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9134615384615384
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.7286906150877144
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7431205481598633
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.6814636752136752
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.6873728123728122
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.6814636752136752
name: Cosine Map@5
- type: cosine_map@10
value: 0.6873728123728124
name: Cosine Map@10
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@5
value: 0.8034825870646766
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8470149253731343
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.1606965174129353
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08470149253731342
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.8034825870646766
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8470149253731343
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.6967322721990336
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7108049353049597
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.6608001658374787
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.6666044776119396
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.6608001658374792
name: Cosine Map@5
- type: cosine_map@10
value: 0.6666044776119403
name: Cosine Map@10
- type: cosine_accuracy@5
value: 0.8557692307692307
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.907051282051282
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.17115384615384616
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0907051282051282
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.8557692307692307
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.907051282051282
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.7241884927554256
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7406789864779515
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.6800747863247864
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.6868208180708181
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.6800747863247864
name: Cosine Map@5
- type: cosine_map@10
value: 0.6868208180708181
name: Cosine Map@10
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@5
value: 0.777363184079602
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8258706467661692
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.15547263681592036
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08258706467661689
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.777363184079602
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8258706467661692
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.6732366988651133
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.6890994908635195
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.638246268656716
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.6448970425649527
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.6382462686567164
name: Cosine Map@5
- type: cosine_map@10
value: 0.644897042564953
name: Cosine Map@10
- type: cosine_accuracy@5
value: 0.842948717948718
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8814102564102564
name: Cosine Accuracy@10
- type: cosine_precision@5
value: 0.16858974358974357
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08814102564102565
name: Cosine Precision@10
- type: cosine_recall@5
value: 0.842948717948718
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8814102564102564
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.7221379927354293
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7350654713813302
name: Cosine Ndcg@10
- type: cosine_mrr@5
value: 0.6817307692307693
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.6873613654863654
name: Cosine Mrr@10
- type: cosine_map@5
value: 0.6817307692307691
name: Cosine Map@5
- type: cosine_map@10
value: 0.6873613654863655
name: Cosine Map@10
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the tsdae and sup datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("federicovolponi/BAAI-bge-base-en-v1.5-space-multitask-tsdae")
sentences = [
'Table of',
' Table 4 offers a description of the selected FoM',
'\n[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.8197 |
cosine_accuracy@10 |
0.8607 |
cosine_precision@5 |
0.1639 |
cosine_precision@10 |
0.0861 |
cosine_recall@5 |
0.8197 |
cosine_recall@10 |
0.8607 |
cosine_ndcg@5 |
0.7117 |
cosine_ndcg@10 |
0.725 |
cosine_mrr@5 |
0.6753 |
cosine_mrr@10 |
0.6808 |
cosine_map@5 |
0.6753 |
cosine_map@10 |
0.6808 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.8035 |
cosine_accuracy@10 |
0.847 |
cosine_precision@5 |
0.1607 |
cosine_precision@10 |
0.0847 |
cosine_recall@5 |
0.8035 |
cosine_recall@10 |
0.847 |
cosine_ndcg@5 |
0.6967 |
cosine_ndcg@10 |
0.7108 |
cosine_mrr@5 |
0.6608 |
cosine_mrr@10 |
0.6666 |
cosine_map@5 |
0.6608 |
cosine_map@10 |
0.6666 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.7774 |
cosine_accuracy@10 |
0.8259 |
cosine_precision@5 |
0.1555 |
cosine_precision@10 |
0.0826 |
cosine_recall@5 |
0.7774 |
cosine_recall@10 |
0.8259 |
cosine_ndcg@5 |
0.6732 |
cosine_ndcg@10 |
0.6891 |
cosine_mrr@5 |
0.6382 |
cosine_mrr@10 |
0.6449 |
cosine_map@5 |
0.6382 |
cosine_map@10 |
0.6449 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.8686 |
cosine_accuracy@10 |
0.9135 |
cosine_precision@5 |
0.1737 |
cosine_precision@10 |
0.0913 |
cosine_recall@5 |
0.8686 |
cosine_recall@10 |
0.9135 |
cosine_ndcg@5 |
0.7287 |
cosine_ndcg@10 |
0.7431 |
cosine_mrr@5 |
0.6815 |
cosine_mrr@10 |
0.6874 |
cosine_map@5 |
0.6815 |
cosine_map@10 |
0.6874 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.8558 |
cosine_accuracy@10 |
0.9071 |
cosine_precision@5 |
0.1712 |
cosine_precision@10 |
0.0907 |
cosine_recall@5 |
0.8558 |
cosine_recall@10 |
0.9071 |
cosine_ndcg@5 |
0.7242 |
cosine_ndcg@10 |
0.7407 |
cosine_mrr@5 |
0.6801 |
cosine_mrr@10 |
0.6868 |
cosine_map@5 |
0.6801 |
cosine_map@10 |
0.6868 |
Information Retrieval
Metric |
Value |
cosine_accuracy@5 |
0.8429 |
cosine_accuracy@10 |
0.8814 |
cosine_precision@5 |
0.1686 |
cosine_precision@10 |
0.0881 |
cosine_recall@5 |
0.8429 |
cosine_recall@10 |
0.8814 |
cosine_ndcg@5 |
0.7221 |
cosine_ndcg@10 |
0.7351 |
cosine_mrr@5 |
0.6817 |
cosine_mrr@10 |
0.6874 |
cosine_map@5 |
0.6817 |
cosine_map@10 |
0.6874 |
Training Details
Training Datasets
tsdae
- Dataset: tsdae
- Size: 95,730 training samples
- Columns:
damaged_sentence
and orginal_sentence
- Approximate statistics based on the first 1000 samples:
|
damaged_sentence |
orginal_sentence |
type |
string |
string |
details |
- min: 3 tokens
- mean: 13.28 tokens
- max: 174 tokens
|
- min: 6 tokens
- mean: 30.02 tokens
- max: 374 tokens
|
- Samples:
damaged_sentence |
orginal_sentence |
, the described above allows continue this |
However, the modularization into functional units described above allows to continue this idea and form a well-defined functional hierarchy |
Solar scientific military and the stage for Change mission technology improvements—continued advances in will mass/volume |
Solar sails can perform unique scientific, commercial, and military missions, and the stage is set for near-term UPGRADE/REPLACE PAYLOADS • Change of mission • Take advantage of technology improvements—continued advances in electronics will cause payload components to shrink in mass/volume, while capabilities increase |
4mm Hexcell 5052 aluminum honeycomb with 1 |
4mm thick Hexcell 5052 alloy hexagonal aluminum honeycomb with 1 |
- Loss:
losses.WeightedDenoisingAutoEncoderLoss
sup
Evaluation Datasets
tsdae
- Dataset: tsdae
- Size: 10,637 evaluation samples
- Columns:
damaged_sentence
and orginal_sentence
- Approximate statistics based on the first 1000 samples:
|
damaged_sentence |
orginal_sentence |
type |
string |
string |
details |
- min: 3 tokens
- mean: 13.52 tokens
- max: 182 tokens
|
- min: 5 tokens
- mean: 30.74 tokens
- max: 452 tokens
|
- Samples:
damaged_sentence |
orginal_sentence |
from providing student licenses the OirthirSAT team |
The authors thank Michael Doherty from Ansys for providing student licenses for STK to the OirthirSAT team
|
at 205 |
4 as observed by TROPICS Pathfinder at 205 GHz |
this reason of chemistry needed to radiative heating |
For this reason, careful reexaminations of the chemistry models are needed to reduce the uncertainties in the radiative heating |
- Loss:
losses.WeightedDenoisingAutoEncoderLoss
sup
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
learning_rate
: 3e-06
weight_decay
: 0.001
num_train_epochs
: 6
bf16
: True
tf32
: False
load_best_model_at_end
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 3e-06
weight_decay
: 0.001
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 6
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.0
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: False
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
sup loss |
tsdae loss |
dim_256_cosine_map@10 |
dim_512_cosine_map@10 |
dim_768_cosine_map@10 |
0.0311 |
100 |
0.1372 |
- |
- |
- |
- |
- |
0.0622 |
200 |
0.1061 |
- |
- |
- |
- |
- |
0.0932 |
300 |
0.1161 |
- |
- |
- |
- |
- |
0.1243 |
400 |
0.0881 |
- |
- |
- |
- |
- |
0.1554 |
500 |
0.0878 |
0.2867 |
0.0724 |
0.6238 |
0.6501 |
0.6502 |
0.1865 |
600 |
0.0929 |
- |
- |
- |
- |
- |
0.2175 |
700 |
0.0979 |
- |
- |
- |
- |
- |
0.2486 |
800 |
0.0902 |
- |
- |
- |
- |
- |
0.2797 |
900 |
0.0755 |
- |
- |
- |
- |
- |
0.3108 |
1000 |
0.0885 |
0.2262 |
0.0714 |
0.6380 |
0.6669 |
0.6639 |
0.3418 |
1100 |
0.0854 |
- |
- |
- |
- |
- |
0.3729 |
1200 |
0.0975 |
- |
- |
- |
- |
- |
0.4040 |
1300 |
0.1104 |
- |
- |
- |
- |
- |
0.4351 |
1400 |
0.0829 |
- |
- |
- |
- |
- |
0.4661 |
1500 |
0.0846 |
0.1949 |
0.0710 |
0.6529 |
0.6803 |
0.6765 |
0.4972 |
1600 |
0.0821 |
- |
- |
- |
- |
- |
0.5283 |
1700 |
0.0892 |
- |
- |
- |
- |
- |
0.5594 |
1800 |
0.0859 |
- |
- |
- |
- |
- |
0.5904 |
1900 |
0.0936 |
- |
- |
- |
- |
- |
0.6215 |
2000 |
0.0829 |
0.1703 |
0.0706 |
0.6579 |
0.6837 |
0.6851 |
0.6526 |
2100 |
0.0972 |
- |
- |
- |
- |
- |
0.6837 |
2200 |
0.0797 |
- |
- |
- |
- |
- |
0.7147 |
2300 |
0.0868 |
- |
- |
- |
- |
- |
0.7458 |
2400 |
0.0781 |
- |
- |
- |
- |
- |
0.7769 |
2500 |
0.0837 |
0.1588 |
0.0704 |
0.6633 |
0.7016 |
0.6915 |
0.8080 |
2600 |
0.0778 |
- |
- |
- |
- |
- |
0.8390 |
2700 |
0.0873 |
- |
- |
- |
- |
- |
0.8701 |
2800 |
0.086 |
- |
- |
- |
- |
- |
0.9012 |
2900 |
0.0832 |
- |
- |
- |
- |
- |
0.9323 |
3000 |
0.0931 |
0.1502 |
0.0697 |
0.6733 |
0.6951 |
0.6927 |
0.9633 |
3100 |
0.0891 |
- |
- |
- |
- |
- |
0.9944 |
3200 |
0.0787 |
- |
- |
- |
- |
- |
1.0255 |
3300 |
0.0843 |
- |
- |
- |
- |
- |
1.0566 |
3400 |
0.0705 |
- |
- |
- |
- |
- |
1.0876 |
3500 |
0.0808 |
0.1484 |
0.0686 |
0.6782 |
0.6880 |
0.6824 |
1.1187 |
3600 |
0.0754 |
- |
- |
- |
- |
- |
1.1498 |
3700 |
0.0714 |
- |
- |
- |
- |
- |
1.1809 |
3800 |
0.0734 |
- |
- |
- |
- |
- |
1.2119 |
3900 |
0.0732 |
- |
- |
- |
- |
- |
1.2430 |
4000 |
0.0702 |
0.1508 |
0.0679 |
0.6674 |
0.6803 |
0.6770 |
1.2741 |
4100 |
0.0712 |
- |
- |
- |
- |
- |
1.3052 |
4200 |
0.0719 |
- |
- |
- |
- |
- |
1.3362 |
4300 |
0.0744 |
- |
- |
- |
- |
- |
1.3673 |
4400 |
0.0796 |
- |
- |
- |
- |
- |
1.3984 |
4500 |
0.0823 |
0.1377 |
0.0673 |
0.6677 |
0.6872 |
0.6835 |
1.4295 |
4600 |
0.0693 |
- |
- |
- |
- |
- |
1.4605 |
4700 |
0.0718 |
- |
- |
- |
- |
- |
1.4916 |
4800 |
0.0726 |
- |
- |
- |
- |
- |
1.5227 |
4900 |
0.0739 |
- |
- |
- |
- |
- |
1.5538 |
5000 |
0.0746 |
0.1366 |
0.0669 |
0.6671 |
0.6900 |
0.6846 |
1.5848 |
5100 |
0.0757 |
- |
- |
- |
- |
- |
1.6159 |
5200 |
0.0747 |
- |
- |
- |
- |
- |
1.6470 |
5300 |
0.0729 |
- |
- |
- |
- |
- |
1.6781 |
5400 |
0.0747 |
- |
- |
- |
- |
- |
1.7091 |
5500 |
0.0726 |
0.1357 |
0.0666 |
0.6598 |
0.6806 |
0.6904 |
1.7402 |
5600 |
0.0735 |
- |
- |
- |
- |
- |
1.7713 |
5700 |
0.0709 |
- |
- |
- |
- |
- |
1.8024 |
5800 |
0.0698 |
- |
- |
- |
- |
- |
1.8334 |
5900 |
0.0714 |
- |
- |
- |
- |
- |
1.8645 |
6000 |
0.0732 |
0.1348 |
0.0662 |
0.6729 |
0.6908 |
0.6923 |
1.8956 |
6100 |
0.0752 |
- |
- |
- |
- |
- |
1.9267 |
6200 |
0.0744 |
- |
- |
- |
- |
- |
1.9577 |
6300 |
0.0775 |
- |
- |
- |
- |
- |
1.9888 |
6400 |
0.0702 |
- |
- |
- |
- |
- |
2.0199 |
6500 |
0.0713 |
0.1311 |
0.0660 |
0.6874 |
0.6868 |
0.6874 |
Framework Versions
- Python: 3.12.0
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu118
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
WeightedDenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
WeightedMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}