mistral-finetuned-samsum
This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.1-GPTQ on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: gptq
- bits: 4
- tokenizer: None
- dataset: None
- group_size: 128
- damp_percent: 0.1
- desc_act: True
- sym: True
- true_sequential: True
- use_cuda_fp16: False
- model_seqlen: None
- block_name_to_quantize: None
- module_name_preceding_first_block: None
- batch_size: 1
- pad_token_id: None
- use_exllama: False
- max_input_length: None
- exllama_config: {'version': <ExllamaVersion.ONE: 1>}
- cache_block_outputs: True
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 50
- mixed_precision_training: Native AMP
Training results
Framework versions
- PEFT 0.7.0
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 1
Model tree for fbellame/mistral-finetuned-samsum
Base model
mistralai/Mistral-7B-v0.1
Finetuned
mistralai/Mistral-7B-Instruct-v0.1
Quantized
TheBloke/Mistral-7B-Instruct-v0.1-GPTQ