fbaldassarri's picture
Initial Upload
065d688 verified
metadata
language:
  - en
tags:
  - pytorch
  - causal-lm
  - olmo
  - autoround
  - intel-autoround
  - auto-awq
  - autogawq
  - woq
  - awq
  - gptq
  - intel
  - pytorch
license: apache-2.0
model_name: OLMo 2 7B
base_model:
  - allenai/OLMo-2-1124-7B
inference: false
model_creator: allenai
datasets:
  - allenai/RLVR-GSM
pipeline_tag: text-generation
prompt_template: '{prompt} '
quantized_by: fbaldassarri

Model Information

Quantized version of allenai/OLMo-2-1124-7B using torch.float32 for quantization tuning.

  • 4 bits (INT4)
  • group size = 128
  • Asymmetrical Quantization
  • Method AutoAWQ

Quantization framework: Intel AutoRound v0.4.2

Note: this INT4 version of OLMo-2-1124-7B has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.2.tar.gz
tar -xvzf v0.4.2.tar.gz
cd auto-round-0.4.2
pip install -r requirements-cpu.txt --upgrade

Step 2 Build Intel AutoRound wheel from sources

pip install -vvv --no-build-isolation -e .[cpu]

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "allenai/OLMo-2-1124-7B"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
  autoround.quantize()
  output_dir = "./AutoRound/allenai_OLMo-2-1124-7B-autoawq-int4-gs128-asym"
  autoround.save_quantized(output_dir, format='auto_awq', inplace=True)

License

Apache 2.0 License

Disclaimer

This quantized model comes with no warranty. It has been developed only for research purposes.