Whisper-Small (el) for Transcription

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 el dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4805
  • Wer: 20.6352

Model description

This model is trained for transcription on the Greek subset on mozilla-foundation/common_voice_11_0 interleaved splits train+eval

Intended uses & limitations

This is part of the Whisper Finetuning Event (December 2022)

Training and evaluation data

Training used interleaved splits: train + evaluation. Evaluation was done on the test split. Data was streamed from Hugging Face's Hub.

Training procedure

The script used has been uploaded in the files of this space The command to run it was:

python ./run_speech_recognition_seq2seq_streaming.py \
                --model_name_or_path   "openai/whisper-small" \
                --model_revision       "main" \
                --do_train             True \
                --do_eval              True \
                --use_auth_token       False \
                --freeze_encoder       False \
                --model_index_name     "whisper-sm-el-xs" \
                --dataset_name         "mozilla-foundation/common_voice_11_0" \
                --dataset_config_name  "el" \
                --audio_column_name    "audio" \
                --text_column_name     "sentence" \
                --max_duration_in_seconds 30 \
                --train_split_name    "train+validation" \
                --eval_split_name      "test" \
                --do_lower_case         False \
                --do_remove_punctuation False \
                --do_normalize_eval     True \
                --language              "greek" \
                --task                  "transcribe" \
                --shuffle_buffer_size   500 \
                --output_dir             "./data/finetuningRuns/whisper-sm-el-xs" \
                --per_device_train_batch_size 16 \
                --gradient_accumulation_steps 4  \
                --learning_rate          1e-5 \
                --warmup_steps           500 \
                --max_steps              5000 \
                --gradient_checkpointing True \
                --fp16                   True \
                --evaluation_strategy    "steps" \
                --per_device_eval_batch_size 8 \
                --predict_with_generate  True \
                --generation_max_length  225 \
                --save_steps             1000 \
                --eval_steps             1000 \
                --logging_steps          25 \
                --report_to              "tensorboard" \
                --load_best_model_at_end True \
                --metric_for_best_model  "wer" \
                --greater_is_better      False \
                --push_to_hub            False \
                --overwrite_output_dir    True 

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0024 18.01 1000 0.4246 21.0438
0.0003 37.01 2000 0.4805 20.6352
0.0001 56.01 3000 0.5102 20.8395
0.0001 75.0 4000 0.5296 21.0717
0.0001 94.0 5000 0.5375 21.0253

Here is the summary from the log of the run:

***** train metrics *****
  epoch                    =        94.0
  train_loss               =      0.0222
  train_runtime            = 23:06:13.19
  train_samples_per_second =       3.847
  train_steps_per_second   =        0.06
12/08/2022 11:20:17 - INFO - __main__ - *** Evaluate ***

***** eval metrics *****
  epoch                   =       94.0
  eval_loss               =     0.4805
  eval_runtime            = 0:23:03.68
  eval_samples_per_second =      1.226
  eval_steps_per_second   =      0.153
  eval_wer                =    20.6352
Thu 08 Dec 2022 11:43:22 AM EST

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.7.1.dev0
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train farsipal/whisper-sm-el-xs

Evaluation results