File size: 1,082 Bytes
85fbc65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

---

tags:
- autotrain
- tabular
- regression
- tabular-regression
datasets:
- autotrain-vessel-eta/autotrain-data
---


# Model Trained Using AutoTrain

- Problem type: Tabular regression

## Validation Metrics

- r2: 0.2033836841583252
- mse: 53092.500978994
- mae: 150.96381290340423
- rmse: 230.41810037189788
- rmsle: 0.9569819523414094
- loss: 230.41810037189788

## Best Params

- learning_rate: 0.0695392185390836

- reg_lambda: 0.00017542491817558795
- reg_alpha: 0.6577124531542021

- subsample: 0.3632574815242663

- colsample_bytree: 0.8007491192913739
- max_depth: 4

- early_stopping_rounds: 166

- n_estimators: 15000
- eval_metric: rmse



## Usage



```python

import json

import joblib

import pandas as pd



model = joblib.load('model.joblib')

config = json.load(open('config.json'))



features = config['features']



# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)



# predictions can be converted to original labels using label_encoders.pkl

```