Model Trained Using AutoTrain

  • Problem type: Tabular regression

Validation Metrics

  • r2: 0.2033836841583252
  • mse: 53092.500978994
  • mae: 150.96381290340423
  • rmse: 230.41810037189788
  • rmsle: 0.9569819523414094
  • loss: 230.41810037189788

Best Params

  • learning_rate: 0.0695392185390836
  • reg_lambda: 0.00017542491817558795
  • reg_alpha: 0.6577124531542021
  • subsample: 0.3632574815242663
  • colsample_bytree: 0.8007491192913739
  • max_depth: 4
  • early_stopping_rounds: 166
  • n_estimators: 15000
  • eval_metric: rmse

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)

# predictions can be converted to original labels using label_encoders.pkl
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .