vit-base-mnist / README.md
farleyknight's picture
update model card README.md
fb257b7
|
raw
history blame
1.99 kB
metadata
license: apache-2.0
tags:
  - image-classification
  - vision
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-mnist
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: farleyknight/roman_numerals
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8308823529411765

vit-base-mnist

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the farleyknight/roman_numerals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6891
  • Accuracy: 0.8309

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9053 1.0 289 1.3241 0.7108
1.3293 2.0 578 0.9333 0.7892
1.1251 3.0 867 0.7989 0.7843
0.9837 4.0 1156 0.6956 0.8186
0.999 5.0 1445 0.6891 0.8309

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.11.0a0+17540c5
  • Datasets 2.4.0
  • Tokenizers 0.12.1