Fine tuned version of moondream2 model using gokaygokay/random_instruct_docci dataset. Which gives extremely detailed captions of the images.

pip install transformers timm einops bitsandbytes accelerate flash-attn
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from PIL import Image

DEVICE = "cuda"
DTYPE = (
    torch.float32 if DEVICE == "cpu" else torch.float16
)  # CPU doesn't support float16
revision = "3ec40c7b6b5d87bc0c51edee45e21f5f29b449d8"
tokenizer = AutoTokenizer.from_pretrained(
    "fal-ai/moondream2-docci-instruct",
    trust_remote_code=True,
    revision=revision
)
moondream = AutoModelForCausalLM.from_pretrained(
    "fal-ai/moondream2-docci-instruct",
    trust_remote_code=True,
    torch_dtype=DTYPE,
    device_map={"": DEVICE},
    attn_implementation="flash_attention_2",
    revision=revision
)
moondream.eval()

image_path = "<your_image_path>"
image = Image.open(image_path).convert("RGB")
md_answer = moondream.answer_question(
    moondream.encode_image(image),
    "what is this picture about",
    tokenizer=tokenizer,
)

print(md_answer)
Downloads last month
37
Safetensors
Model size
1.86B params
Tensor type
FP16
·
Inference API
Inference API (serverless) does not yet support model repos that contain custom code.

Datasets used to train fal/moondream2-docci-instruct