metadata
library_name: transformers
license: mit
base_model: Sana1207/Hindi_SpeechT5_finetuned
tags:
- generated_from_trainer
model-index:
- name: Sindhi-TTS
results: []
Sindhi-TTS
This model is a fine-tuned version of Sana1207/Hindi_SpeechT5_finetuned on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4887
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5769 | 0.3992 | 100 | 0.5673 |
0.5602 | 0.7984 | 200 | 0.5603 |
0.553 | 1.1986 | 300 | 0.5489 |
0.5413 | 1.5978 | 400 | 0.5433 |
0.5361 | 1.9970 | 500 | 0.5336 |
0.5391 | 2.3972 | 600 | 0.5414 |
0.524 | 2.7964 | 700 | 0.5290 |
0.5253 | 3.1966 | 800 | 0.5317 |
0.5272 | 3.5958 | 900 | 0.5234 |
0.5258 | 3.9950 | 1000 | 0.5280 |
0.5173 | 4.3952 | 1100 | 0.5180 |
0.518 | 4.7944 | 1200 | 0.5207 |
0.5119 | 5.1946 | 1300 | 0.5157 |
0.5114 | 5.5938 | 1400 | 0.5169 |
0.5138 | 5.9930 | 1500 | 0.5140 |
0.5048 | 6.3932 | 1600 | 0.5122 |
0.5059 | 6.7924 | 1700 | 0.5173 |
0.4991 | 7.1926 | 1800 | 0.5057 |
0.5038 | 7.5918 | 1900 | 0.5053 |
0.4994 | 7.9910 | 2000 | 0.5071 |
0.4989 | 8.3912 | 2100 | 0.5080 |
0.4951 | 8.7904 | 2200 | 0.5099 |
0.4941 | 9.1906 | 2300 | 0.5022 |
0.493 | 9.5898 | 2400 | 0.5039 |
0.4915 | 9.9890 | 2500 | 0.5014 |
0.4911 | 10.3892 | 2600 | 0.5066 |
0.4861 | 10.7884 | 2700 | 0.4987 |
0.4875 | 11.1886 | 2800 | 0.5042 |
0.4892 | 11.5878 | 2900 | 0.4980 |
0.4909 | 11.9870 | 3000 | 0.5007 |
0.4886 | 12.3872 | 3100 | 0.4980 |
0.4857 | 12.7864 | 3200 | 0.4952 |
0.4868 | 13.1866 | 3300 | 0.4972 |
0.482 | 13.5858 | 3400 | 0.4957 |
0.479 | 13.9850 | 3500 | 0.5029 |
0.48 | 14.3852 | 3600 | 0.4954 |
0.4819 | 14.7844 | 3700 | 0.4982 |
0.4791 | 15.1846 | 3800 | 0.4936 |
0.4776 | 15.5838 | 3900 | 0.4947 |
0.4736 | 15.9830 | 4000 | 0.4930 |
0.4744 | 16.3832 | 4100 | 0.4937 |
0.4735 | 16.7824 | 4200 | 0.4895 |
0.4789 | 17.1826 | 4300 | 0.4936 |
0.4729 | 17.5818 | 4400 | 0.4920 |
0.4742 | 17.9810 | 4500 | 0.4915 |
0.4721 | 18.3812 | 4600 | 0.4887 |
0.4733 | 18.7804 | 4700 | 0.4933 |
0.4849 | 19.1806 | 4800 | 0.4879 |
0.4692 | 19.5798 | 4900 | 0.4889 |
0.4747 | 19.9790 | 5000 | 0.4887 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3