|
--- |
|
language: en |
|
datasets: |
|
- librispeech_asr |
|
tags: |
|
- speech |
|
- audio |
|
- automatic-speech-recognition |
|
- hf-asr-leaderboard |
|
license: apache-2.0 |
|
model-index: |
|
- name: wav2vec2-conformer-rel-pos-large-960h-ft |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: LibriSpeech (clean) |
|
type: librispeech_asr |
|
config: clean |
|
split: test |
|
args: |
|
language: en |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 1.85 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: LibriSpeech (other) |
|
type: librispeech_asr |
|
config: other |
|
split: test |
|
args: |
|
language: en |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 3.83 |
|
--- |
|
|
|
# Wav2Vec2-Conformer-Large-960h with Relative Position Embeddings |
|
|
|
Wav2Vec2-Conformer with relative position embeddings, pretrained and **fine-tuned on 960 hours of Librispeech** on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. |
|
|
|
**Paper**: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) |
|
|
|
**Authors**: Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino |
|
|
|
The results of Wav2Vec2-Conformer can be found in Table 3 and Table 4 of the [official paper](https://arxiv.org/abs/2010.05171). |
|
|
|
|
|
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. |
|
|
|
# Usage |
|
|
|
To transcribe audio files the model can be used as a standalone acoustic model as follows: |
|
|
|
```python |
|
from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC |
|
from datasets import load_dataset |
|
import torch |
|
|
|
# load model and processor |
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft") |
|
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large-960h-ft") |
|
|
|
# load dummy dataset and read soundfiles |
|
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") |
|
|
|
# tokenize |
|
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values |
|
|
|
# retrieve logits |
|
logits = model(input_values).logits |
|
|
|
# take argmax and decode |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids) |
|
``` |
|
|
|
## Evaluation |
|
|
|
This code snippet shows how to evaluate **facebook/wav2vec2-conformer-rel-pos-large-960h-ft** on LibriSpeech's "clean" and "other" test data. |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ConformerForCTC, Wav2Vec2Processor |
|
import torch |
|
from jiwer import wer |
|
|
|
|
|
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") |
|
|
|
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda") |
|
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") |
|
|
|
def map_to_pred(batch): |
|
inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest") |
|
input_values = inputs.input_values.to("cuda") |
|
attention_mask = inputs.attention_mask.to("cuda") |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids) |
|
batch["transcription"] = transcription |
|
return batch |
|
|
|
result = librispeech_eval.map(map_to_pred, remove_columns=["audio"]) |
|
|
|
print("WER:", wer(result["text"], result["transcription"])) |
|
``` |
|
|
|
*Result (WER)*: |
|
|
|
| "clean" | "other" | |
|
|---|---| |
|
| 1.85 | 3.82 | |