ValueError: negative dimensions are not allowed

#26
by StephennFernandes - opened

hey @ylacombe , ive been trying to finetune w2vbert-2.0 on some of my own custom training data, however when i run the prepare_dataset function i get the following error: ValueError: negative dimensions are not allowed
that originates from:

File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/audio_utils.py", line 532, in spectrogram
    spectrogram = np.empty((num_frames, num_frequency_bins), dtype=np.complex64)

i have tried finetuning on other models like MMS and Whisper but the issue only persists in w2vBERT-2.0.

for some additonal context i am using the latest release of transformers, datasets,torchaudio and torch.

the following is the stack trace of the crash.

preprocess datasets (num_proc=32):   9%|██▋                          | 6791/71915 [00:27<04:24, 245.95 examples/s]
multiprocess.pool.RemoteTraceback: 
"""
Traceback (most recent call last):
  File "/home/user/anaconda3/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker
    result = (True, func(*args, **kwds))
                    ^^^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 634, in _write_generator_to_queue
    for i, result in enumerate(func(**kwargs)):
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3517, in _map_single
    example = apply_function_on_filtered_inputs(example, i, offset=offset)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3416, in apply_function_on_filtered_inputs
    processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/media/user/drive_2/maithili_asr/w2vbert2_train.py", line 669, in prepare_dataset
    batch["input_features"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
                              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py", line 99, in __call__
    inputs = self.feature_extractor(audio, sampling_rate=sampling_rate, **kwargs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py", line 259, in __call__
    features = [self._extract_fbank_features(waveform) for waveform in raw_speech]
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py", line 259, in <listcomp>
    features = [self._extract_fbank_features(waveform) for waveform in raw_speech]
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py", line 128, in _extract_fbank_features
    features = spectrogram(
               ^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/audio_utils.py", line 532, in spectrogram
    spectrogram = np.empty((num_frames, num_frequency_bins), dtype=np.complex64)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: negative dimensions are not allowed
"""

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/media/user/drive_2/maithili_asr/w2vbert2_train.py", line 807, in <module>
    main()
  File "/media/user/drive_2/maithili_asr/w2vbert2_train.py", line 676, in main
    vectorized_datasets = raw_datasets.map(
                          ^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/dataset_dict.py", line 869, in map
    {
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/dataset_dict.py", line 870, in <dictcomp>
    k: dataset.map(
       ^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 602, in wrapper
    out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 567, in wrapper
    out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3248, in map
    for rank, done, content in iflatmap_unordered(
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 674, in iflatmap_unordered
    [async_result.get(timeout=0.05) for async_result in async_results]
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 674, in <listcomp>
    [async_result.get(timeout=0.05) for async_result in async_results]
     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/multiprocess/pool.py", line 774, in get
    raise self._value
  File "/home/user/anaconda3/lib/python3.11/site-packages/multiprocess/pool.py", line 125, in worker
    result = (True, func(*args, **kwds))
    ^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/utils/py_utils.py", line 634, in _write_generator_to_queue
    for i, result in enumerate(func(**kwargs)):
      ^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3517, in _map_single
    example = apply_function_on_filtered_inputs(example, i, offset=offset)
    ^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3416, in apply_function_on_filtered_inputs
    processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)
    ^^^^^^^^^^^^^^^^^
  File "/media/user/drive_2/maithili_asr/w2vbert2_train.py", line 669, in prepare_dataset
    batch["input_features"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
    ^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py", line 99, in __call__
    inputs = self.feature_extractor(audio, sampling_rate=sampling_rate, **kwargs)
    ^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py", line 259, in __call__
    features = [self._extract_fbank_features(waveform) for waveform in raw_speech]
    ^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py", line 259, in <listcomp>
    features = [self._extract_fbank_features(waveform) for waveform in raw_speech]
    ^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py", line 128, in _extract_fbank_features
    features = spectrogram(
    ^^^^^^^^^^^^^^^^^
  File "/home/user/anaconda3/lib/python3.11/site-packages/transformers/audio_utils.py", line 532, in spectrogram
    spectrogram = np.empty((num_frames, num_frequency_bins), dtype=np.complex64)
      ^^^^^^^^^^^^^^^^^
ValueError: negative dimensions are not allowed

the following is how my prepare_dataset function looks like.

def prepare_dataset(batch):
        audio = batch["audio"]
        batch["input_features"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
        batch["input_length"] = len(batch["input_features"])

        batch["labels"] = processor(text=batch["target_text"]).input_ids
        return batch

    with training_args.main_process_first(desc="dataset map preprocessing"):
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            remove_columns=next(iter(raw_datasets.values())).column_names,
            num_proc=num_workers,
            desc="preprocess datasets",
        )

ive even used the training script from: https://lightning.ai/pashanitw/studios/w2v-bert-2-0-asr-finetuning
the following is how this prepare_dataset function looks like:

def preprocess_dataset(batch, processor):
    audio = batch["audio"]
    audio_length_seconds = len(audio["array"]) / audio["sampling_rate"]
    batch["input_features"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
    batch["input_length"] = len(batch["input_features"])
    batch["length_in_seconds"] = audio_length_seconds
    batch["labels"] = processor(text=batch["sentence"]).input_ids
    return batch

But sadly the same error as before:

ValueError: negative dimensions are not allowed

Sign up or log in to comment