mBART-50 many to many multilingual machine translation

This model is a fine-tuned checkpoint of mBART-large-50. mbart-large-50-many-to-many-mmt is fine-tuned for multilingual machine translation. It was introduced in Multilingual Translation with Extensible Multilingual Pretraining and Finetuning paper.

The model can translate directly between any pair of 50 languages. To translate into a target language, the target language id is forced as the first generated token. To force the target language id as the first generated token, pass the forced_bos_token_id parameter to the generate method.

from transformers import MBartForConditionalGeneration, MBart50TokenizerFast

article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है"
article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا."

model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")

# translate Hindi to French
tokenizer.src_lang = "hi_IN"
encoded_hi = tokenizer(article_hi, return_tensors="pt")
generated_tokens = model.generate(
    **encoded_hi,
    forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"]
)
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "Le chef de l 'ONU affirme qu 'il n 'y a pas de solution militaire dans la Syrie."

# translate Arabic to English
tokenizer.src_lang = "ar_AR"
encoded_ar = tokenizer(article_ar, return_tensors="pt")
generated_tokens = model.generate(
    **encoded_ar,
    forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]
)
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "The Secretary-General of the United Nations says there is no military solution in Syria."

See the model hub to look for more fine-tuned versions.

Languages covered

Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)

BibTeX entry and citation info

@article{tang2020multilingual,
    title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning},
    author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan},
    year={2020},
    eprint={2008.00401},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
304,132
Safetensors
Model size
611M params
Tensor type
F32
·
Inference API
Examples

Model tree for facebook/mbart-large-50-many-to-many-mmt

Adapters
2 models
Finetunes
114 models
Quantizations
1 model

Spaces using facebook/mbart-large-50-many-to-many-mmt 100