Need help speeding up headline categorization
#36
by
karpathy-beezy
- opened
Hi all,
I’m working on a project that needs to categorize 300 headlines into 9-16 dynamic categories every hour. I'm using the BART model via Huggingface's API. My current implementation in Python takes 3-5 seconds per headline, which is too slow.
def categorise(categories, item):
API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Ffacebook%2Fbart-large-mnli"
headers = {"Authorization": "Bearer <token>"}
payload = {
"inputs": item,
"parameters": {"candidate_labels": categories},
}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
results = response.json()
return {"category": results[0]['labels'][0], "confidence": results[0]['scores'][0]}
else:
return {"error": f"API request failed with status {response.status_code}"}
I call this function in a for loop for each headline. Is there a way to make this faster?